ABSTRACT:Due to the increasing volume of available SAR Data, powerful classification processings are needed to interpret the images. GMM (Gaussian Mixture Model) is widely used to model distributions. In most applications, GMM algorithm is directly applied on raw SAR data, its disadvantage is that forest and urban areas are classified with the same label and gives problems in interpretation. In this paper, a combination between the improved Freeman decomposition and GMM classification is proposed. The improved Freeman decomposition powers are used as feature vectors for GMM classification. The E-SAR polarimetric image acquired over Oberpfaffenhofen in Germany is used as data set. The result shows that the proposed combination can solve the standard GMM classification problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.