In this paper, we consider parameter estimation of high-order polynomial-phase signals (PPSs). We propose an approach that combines the cubic phase function (CPF) and the highorder ambiguity function (HAF), and is referred to as the hybrid CPF-HAF method. In the proposed method, the phase differentiation is first applied on the observed PPS to produce a cubic phase signal, whose parameters are, in turn, estimated by the CPF. The performance analysis, carried out in the paper, considers up to the tenth-order PPSs, and is supported by numerical examples revealing that the proposed approach outperforms the HAF in terms of the accuracy and signal-to-noise-ratio threshold. Extensions to multicomponent and multidimensional PPSs are also considered, all supported by numerical examples. Specifically, when multicomponent PPSs are considered, the product version of the CPF-HAF outperforms the product HAF (PHAF) that fails to estimate parameters of components whose PPS order exceeds three.Index Terms-Polynomial-phase signals, high-order ambiguity function, cubic phase function, parameter estimation, multicomponent signals, multidimensional signals, non-Gaussian noise.
The method for detection of complex sinusoids in additive white Gaussian noise and estimation of their frequencies is proposed. It contains two stages: 1) sinusoid detection (model order estimation) and coarse frequency estimation, and 2) fine frequency estimation. The proposed method operates in the frequency domain, i.e., it uses the discrete Fourier transform (DFT) as the main tool. Sinusoid detection is performed so that a fixed probability of false alarm is provided (Neymann-Pearson criterion). For both coarse and fine frequency estimations, the three-point periodogram maximization approach is used. Simulations are carried out for variable signal-to-noise ratio, variable frequency displacement between the sinusoids and variable offset from the frequency grid. The proposed method meets the Cramér-Rao lower bound in frequency estimation and practically does not depend on the frequency displacement except for very small displacement values. In terms of model order estimation accuracy, it outperforms the state-of-the-art approaches. The most expensive operation in the method is the calculation of the DFT. Therefore, in terms of calculation complexity, the proposed method is on par with the most efficient algorithms for multiple frequency estimations. INDEX TERMS Cramér-Rao lower bound, discrete Fourier transform, model order estimation, multiple frequency estimation, Neymann-Pearson criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.