We report on the first three-dimensional (3D) complex plasma structure analysis for an experiment that was performed in an elongated discharge tube in the absence of striations. The low frequency discharge was established with 1 kHz alternating dc current through a cylindrical glass tube filled with neon at 30 Pa. The injected particle cloud consisted of monodisperse microparticles. A scanning laser sheet and a camera were used to determine the particle position in 3D. The observed cylindrical-shaped particle cloud showed an ordered structure with a distinct outer particle shell. The observations are in agreement with performed molecular dynamics simulations.
International audienceA hypothesis on the physical mechanism generating the heartbeat instability in complex (dusty) plasmas is presented. It is suggested that the instability occurs due to the periodically repeated critical transformation on the boundary between the microparticle-free area (void) and the complex plasma. The critical transformation is supposed to be analogous to the formation of the sheath in the vicinity of an electrode. The origin of the transformation is the loss of the electrons and ions on microparticles surrounding the void. We have shown that this hypothesis is consistent with the experimentally measured stability parameter range, with the evolution of the plasma glow intensity and microparticle dynamics during the instability, as well as with the observed excitation of the heartbeat instability by an intensity-modulated laser beam (inducing the modulation of plasma density)
This paper reports on the dynamics of a 3-dimensional dusty plasma in a strong magnetic field. An electrostatic potential well created by a conducting or non-conducting ring in the rf discharge confines the charged dust particles. In the absence of the magnetic field, dust grains exhibit a thermal motion about their equilibrium position. As the magnetic field crosses a threshold value (B > 0.02 T), the edge particles start to rotate and form a vortex in the vertical plane. At the same time, the central region particles either exhibit thermal motion or E→×B→ motion in the horizontal plane. At B > 0.15 T, the central region dust grains start to rotate in the opposite direction resulting in a pair of counter-rotating vortices in the vertical plane. The characteristics of the vortex pair change with increasing the strength of the magnetic field (B ∼ 0.8 T). At B > 0.8 T, the dust grains exhibit very complex motion in the rotating torus. The angular frequency variation of rotating particles indicates a differential or sheared dust rotation in a vortex. The angular frequency increases with increasing the magnetic field from 0.05 T to 0.8 T. The ion drag force and dust charge gradient along with the E-field are considered as possible energy sources for driving the edge vortex flow and central region vortex motion, respectively. The directions of rotation also confirm the different energy sources responsible for the vortex motion.
Steady-state clouds of microparticles were observed, levitating in a low-frequency glow discharge generated in an elongated vertical glass tube. A heated ring was attached to the tube wall outside, so that the particles, exhibiting a global convective motion, were confined vertically in the region above the location of the heater. It is shown that the particle vortices were induced by the convection of neutral gas, and the mechanism responsible for the gas convection was the thermal creep along the inhomogeneously heated tube walls. The phenomenon of thermal creep, which commonly occurs in rarefied gases under the presence of thermal gradients, should generally play a substantial role in experiments with complex plasmas.
In order to study the impact of different gas compositions on the bactericidal efficiency of cold atmospheric plasma jets, a device with a controlled atmosphere is built. Various mixtures of argon and helium with air are studied regarding their sterilizing effect on Escherichia coli in solution. Bacteria reduction rates react fundamentally different on addition of air in both gases. In case of helium, a distinct maximum for small admixtures is observed. Several diagnostic techniques were applied to the plasma. Stronger formation of peroxynitrous acid due to higher concentrations of hydrogen peroxide and nitrite is found to be responsible for the observed trends and differences. The presented findings are important for the development of efficient treatment devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.