The research context of this article is the recognition and description of dynamic textures. In image processing, the wavelet transform has been successfully used for characterizing static textures. To our best knowledge, only two works are using spatio-temporal multiscale decomposition based on tensor product for dynamic texture recognition. One contribution of this article is to analyse and compare the ability of the 2D+T curvelet transform, a geometric multiscale decomposition, for characterizing dynamic textures in image sequences. Two approaches using the 2D+T curvelet transform are presented and compared using three new large databases. A second contribution is the construction of these three publicly available benchmarks of increasing complexity. Existing benchmarks are either too small, not available or not always constructed using a reference database. Feature vectors used for recognition are described
Abstract. This paper presents four spatio-temporal wavelet decompositions for characterizing dynamic textures. The main goal of this work is to compare the influence of spatial and temporal variables in the wavelet decomposition scheme. Its novelty is to establish a comparison between the only existing method [11] and three other spatio-temporal decompositions. The four decomposition schemes are presented and successfully applied on a large dynamic texture database. Construction of feature descriptors are tackled as well their relevance, and performances of the methods are discussed. Finally, future prospects are exposed.
Abstract-The research context of this work is dynamic texture analysis and characterization. Many dynamic textures can be modeled as large scale propagating wavefronts and local oscillating phenomena. After introducing a formal model for dynamic textures, the Morphological Component Analysis (MCA) approach with a well chosen dictionary is used to retrieve the components of dynamic textures. We define two new strategies for adaptive thresholding in the MCA framework, which greatly reduce the computation time when applied on videos. Tests on real image sequences illustrate the efficiency of the proposed method. An application to global motion estimation is proposed and future prospects are finally exposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.