In this article we present the algebraic rearrangement, or matrix inversion of the Dirac equation in a curved Riemann-Cartan spacetime with torsion; the presence of non-vanishing torsion is implied by the intrinsic spin-1/2 of the Dirac field. We then demonstrate how the inversion leads to a reformulation of the fully non-linear and self-interactive Einstein-Cartan-Dirac field equations in terms of Dirac bilinears. It has been known for some decades that the Dirac equation for charged fermions interacting with an electromagnetic field can be algebraically inverted, so as to obtain an explicit rational expression of the four-vector potential of the gauge field in terms of the spinors. Substitution of this expression into Maxwell's equations yields the bilinear form of the self-interactive Maxwell-Dirac equations. In the present (purely gravitational) case, the inversion process yields two rational four-vector expressions in terms of Dirac bilinears, which act as gravitational analogues of the electromagnetic vector potential. These "potentials" also appear as irreducible summand components of the connection, along with a traceless residual term of mixed symmetry. When taking the torsion field equation into account, the residual term can be written as a function of the object of anholonomity. Using the local tetrad frame associated with observers co-moving with the Dirac matter, a generic vierbein frame can described in terms of four Dirac bilinear vector fields, normalized by a scalar and pseudoscalar field. A corollary of this is that in regions where the Dirac field is non-vanishing, the self-coupled Einstein-Cartan-Dirac equations can in principle be expressed in terms of Dirac bilinears only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.