Background Hyperhomocysteinaemia is an independent risk factor in the development of cardiovascular disease. Although homocysteine has been shown to affect endothelial cell function, the mechanisms by which it induces disease states are still poorly understood. Here, we report the ability of homocysteine to influence inflammatory cytokine/chemokine production by human saphenous vein endothelial cells, peripheral blood monocytes and monocyte-derived macrophages.
During postischaemic revascularization neutrophil-endothelial adhesion in the skeletal muscle microcirculation, promoted by the neutrophil adhesion molecule Mac-1, may impair muscle blood flow and release oxygen free radicals and proteolytic enzymes which causes further tissue injury. This study has assessed the effect of an anti-Mac-1 monoclonal antibody on the severity of skeletal muscle injury in a rat model of 6-h hindlimb ischaemia and 4-h reperfusion. In control animals a sustained impairment of muscle perfusion was associated with neutrophil sequestration, muscle infarction and muscle oedema (P < 0.001 versus normal rats). In contrast, intravenous administration of anti-Mac-1 monoclonal antibody before revascularization prevented neutrophil recruitment, reduced muscle necrosis and improved postischaemic muscle perfusion at 120 and 240 min (not significantly different from normal), thus confirming that neutrophils are important cellular mediators of skeletal muscle reperfusion injury. Monoclonal antibodies targeting neutrophil adhesion molecules may, therefore, have a role in the prevention of this complication of limb revascularization.
Glucose, and certain sugars that can readily be converted to glucose 6-phosphate, bring about an activation of adipose-tissue lipoprotein lipase when epididymal fat-bodies from starved rats are incubated in the presence of cycloheximide. Other substrates do not support the activation. If the tissue is preincubated in the presence of cycloheximide for longer than 2h, the ability of added glucose to activate the enzyme is lost. On the other hand, the addition of glucose still brings about an increase in lipoprotein lipase activity after preincubation in the absence of cycloheximide for as long as 4h. The magnitude of the increase in enzyme activity brought about by the addition of glucose is increased when protein synthesis is stimulated during the preincubation period by insulin. The results are interpreted in terms of the existence in adipose tissue of a proenzyme pool of lipoprotein lipase that is normally maintained by protein synthesis and that is converted to complete enzyme of higher specific activity by a process that specifically requires glucose.
Lipoprotein lipase (EC 3.1.1.34) extracted from adipose tissue of glucose-fed rats with 5 mM-sodium barbital, pH 7.5, containing 20% (v/v) glycerol and 0.1% (v/v) Triton X-100, was partially purified by affinity chromatography on heparin linked to Sepharose 4B. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the partially purified enzyme preparation revealed the presence of two major Coomassie-staining bands (mol.wts. 62 000 and 56 000) as well as a number of minor bands. Treatment of partially purified enzyme with [1,3-3H]di-isopropyl fluorophosphate resulted in the incorporation of radiolabel into the band of mol.wt. 56 000, but not into the band of mol.wt. 62 000. Both the amount of the 56 000-mol.wt. polypeptide and the incorporation of [1,3-3H]di-isopropyl fluorophosphate into this band were greatly reduced in the enzyme preparations isolated from adipose tissue of 48 h-starved rats. whereas the amount of the 62 000-mol.wt. polypeptide was unaffected by starvation. Purification of lipoprotein lipase from adipose tissue of glucose-fed rats was also carried out using affinity chromatography on Sepharose 4B linked to heparin with low affinity for antithrombin-III. This procedure resulted in the presence of a single band of mol.wt. 56 000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. These results suggest that the polypeptide of mol.wt. 56 000 corresponds to the subunit of lipoprotein lipase, whereas the 62 000-mol.wt. polypeptide probably represents antithrombin-III.
Summary. Background: Endothelial nitric oxide synthase (eNOS) activity in endothelial cells is regulated by posttranslational phosphorylation of critical serine, threonine and tyrosine residues in response to a variety of stimuli. However, the post-translational regulation of eNOS in platelets is poorly defined. Objectives: We investigated the role of tyrosine phosphorylation in the regulation of platelet eNOS activity. Methods: Tyrosine phosphorylation of eNOS and interaction with the tyrosine phosphatase SHP-1 were investigated by coimmunoprecipitation and immunoblotting. An in vitro immunoassay was used to determine eNOS activity together with the contribution of protein tyrosine phosphorylation. Results: We found platelet eNOS was tyrosine phosphorylated under basal conditions. Thrombin induced a dose-and timedependent increase in eNOS activity without altering overall level of tyrosine phosphorylation, although we did observe evidence of minor tyrosine dephosphorylation. In vitro tyrosine dephosphorylation of platelet eNOS using a recombinant protein tyrosine phosphatase enhanced thrombin-induced activity compared to thrombin alone, but had no effect on endothelial eNOS activity either at basal or after stimulation with bradykinin. Having shown that dephosphorylation could modulate platelet eNOS activity we examined the role of potential protein phosphatases important for platelet eNOS activity. We found SHP-1 protein tyrosine phosphatase, coassociated with platelet eNOS in resting platelets, but does not associate with eNOS in endothelial cells. Stimulation of platelets with thrombin increased SHP-1 association with eNOS, while inhibition of SHP-1 abolished the ability of thrombin to induce elevated eNOS activity. Conclusions: Our data suggest a novel role for tyrosine dephosphorylation in platelet eNOS activation, which may be mediated by SHP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.