An index code for a broadcast channel with receiver side information is locally decodable if every receiver can decode its demand using only a subset of the codeword symbols transmitted by the sender instead of observing the entire codeword. Local decodability in index coding improves the error performance when used in wireless broadcast channels, reduces the receiver complexity and improves privacy in index coding. The locality of an index code is the ratio of the number of codeword symbols used by each receiver to the number message symbols demanded by the receiver. Prior work on locality in index coding have considered only single unicast and singleuniprior problems, and the optimal trade-off between broadcast rate and locality is known only for a few cases. In this paper we identify the optimal broadcast rate (including among non-linear codes) for all three receiver unicast problems when the locality is equal to the minimum possible value, i.e., equal to one. The index code that achieves this optimal rate is based on a clique covering technique and is well known. The main contribution of this paper is in providing tight converse results by relating locality to broadcast rate, and showing that this known index coding scheme is optimal when locality is equal to one. Towards this we derive several structural properties of the side information graphs of three receiver unicast problems, and combine them with information theoretic arguments to arrive at a converse. 1 Single uniprior problems are index coding problems where every message is available as side information at a unique receiver.
A class of network codes have been proposed in the literature where the symbols transmitted on network edges are binary vectors and the coding operation performed in network nodes consists of the application of (possibly several) permutations on each incoming vector and XOR-ing the results to obtain the outgoing vector. These network codes, which we will refer to as permute-and-add network codes, involve simpler operations and are known to provide lower complexity solutions than scalar linear codes. The complexity of these codes is determined by their degree which is the number of permutations applied on each incoming vector to compute an outgoing vector. Constructions of permute-and-add network codes for multicast networks are known. In this paper, we provide a new framework based on group algebras to design permute-and-add network codes for arbitrary (not necessarily multicast) networks. Our framework allows the use of any finite group of permutations (including circular shifts, proposed in prior work) and admits a trade-off between coding rate and the degree of the code. Further, our technique permits elegant recovery and generalizations of the key results on permute-and-add network codes known in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.