Abstract. The need of true random number generators for many purposes (ranging from applications in cryptography and stochastic simulation, to search heuristics and game playing) is increasing every day. Many sources of randomness possess the property of stationarity. However, while a biased die may be a good source of entropy, many applications require input in the form of unbiased bits, rather than biased ones. In this paper, we present a new technique for simulating fair coin flips using a biased, stationary source of randomness. Moreover, the same technique can also be used to improve some of the properties of pseudo random number generators. In particular, an improved pseudo random number generator has almost unmeasurable period, uniform distribution of the letters, pairs of letters, triples of letters, and so on, and passes many statistical tests of randomness. Our algorithm for simulating fair coin flips using a biased, stationary source of randomness (or for improving the properties of pseudo random number generators) is designed by using quasigroup string transformations and its properties are mathematically provable. It is very flexible, the input/output strings can be of 2-bits letters, 4-bits letters, bytes, 2-bytes letters, and so on. It is of linear complexity and it needs less than 1Kb memory space in its 2-bits and 4-bits implementations, hence it is suitable for embedded systems as well.
We present MQQ-SIG, a signature scheme based on "Multivariate Quadratic Quasigroups". The MQQ-SIG signature scheme has a public key consisting of n 2 quadratic polynomials in n variables where n = 160, 192, 224 or 256. Under the assumption that solving systems of n 2 MQQ's equations in n variables is as hard as solving systems of random quadratic equations, we prove that in the random oracle model our signature scheme is CMA (Chosen-Message Attack) resistant. From efficiency point of view, the signing and verification processes of MQQ-SIG are three orders of magnitude faster than RSA or ECDSA. Compared with other MQ signing schemes, MQQ-SIG has both advantages and disadvantages. Advantages are that it has more than three times smaller private keys (from 401 to 593 bytes), and the signing process is an order of magnitude faster than other MQ schemes. That makes it very suitable for implementation in smart cards and other embedded systems. However, MQQ-SIG has a big public key (from 125 to 512 Kb) and it is not suitable for systems where the size of the public key has to be small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.