We present experimental results demonstrating that, relative to continuous illumination, an increase of a factor of 3-10 in the photon efficiency of algal photosynthesis is attainable via the judicious application of pulsed light for light intensities of practical interest (e.g., average-to-peak solar irradiance). We also propose a simple model that can account for all the measurements. The model (1) reflects the essential rate-limiting elements in bioproductivity, (2) incorporates the impact of photon arrival-time statistics, and (3) accounts for how the enhancement in photon efficiency depends on the timescales of light pulsing and photon flux density. The key is avoiding ''clogging'' of the photosynthetic pathway by properly timing the light-dark cycles experienced by algal cells. We show how this can be realized with pulsed light sources, or by producing pulsed-light effects from continuous illumination via turbulent mixing in dense algal cultures in thin photobioreactors.
Photobioreactors (PBRs) demonstrating very high bio-productivity involve a complex interaction between biomass density, light path, light intensity, and timescales of random cell movement. This work presents a new reactor model capable of simulating the effects of the above-mentioned parameters on the biomass productivity of a PBR. The work presented in this paper includes (i) development of photosynthesis model based on occupancy of charge carriers associated with the linear electron transport chain of photosystem-II, (ii) tuning and validation of the kinetics model using flashing light data reported in the literature, and (iii) reactor model development by integrating kinetics with a simple flow depiction including the effect of boundary layer thickness.For the first time, the role of the boundary layer in determining the productivity of PBRs is elucidated.
Ulva lactuca is regarded as a prospective energy crop for biorefinery owing to its affluent biochemical composition and high growth rate. In fast-growing macroalgae, biomass development strictly depends on external nitrogen pools. Additionally, nitrogen uptake rates and photosynthetic pigment content vary with type of nitrogen source and light conditions. However, the combined influence of nitrogen source and light intensity on photosynthesis is not widely studied. In present study, pale green phenotype of U. lactuca was obtained under high light (HL) condition when inorganic nitrogen (nitrate) in the media was substituted with organic nitrogen (urea). Further, pale green phenotype survived the saturating light intensities in contrast to the normal pigmented control which bleached in HL. Detailed analysis of biochemical composition and photosynthesis was performed to understand functional antenna size and photoprotection in pale green phenotype. Under HL, urea-grown cultures exhibited increased growth rate, carbohydrate and lipid content while substantial reduction in protein, chlorophyll content and PSII antenna size was observed. Further, in vivo slow and polyphasic chlorophyll a (Chl a) fluorescence studies revealed reduction in excitation pressure on PSII along with low non-photochemical quenching thus, transmitting most of the absorbed energy into photochemistry. The results obtained could be correlated to previous report on cultivation of U. lactuca through saturating summer intensities (1000 µmole photons m s) in urea based: poultry litter extract (PLE). Having proved critical role of urea in conforming photoprotection, the application PLE was authenticated for futuristic, sustainable and year-round biomass cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.