AbstractTrademark recognition and retrieval is a vital appliance component of content-based image retrieval (CBIR). Reduction in the semantic gap, attaining more accuracy, reduction in computation complexity, and hence in execution time, are the major challenges in designing and developing a trademark retrieval system. The direction of the proposed work takes into account these challenges by implementing trademark image retrieval through deep convolutional neural networks (DCNNs) integrated with a relevant feedback mechanism. The dataset features are optimized through particle swarm optimization (PSO), reducing the search space. These best/optimized features are given to the self-organizing map (SOM) for clustering at the preprocessing stage. The CNN model is trained on feature representations of relevant and irrelevant images, using the feedback information from the user bringing the marked relevant images closer to the query. Experimentation proved a significant performance when evaluated using FlickrLogos-27, FlickrLogos-32, and FlickrLogos-32 PLUS datasets, as illustrated in the performance results section.
Logo recognition system deals with matching of the input trademark or logo with stored trademark images in database. This application, under CBIR umbrella, focuses on optimizing search through database by extracting minimum features from set of the images and using relevance feedback mechanism to identify the relevant images. Obtaining higher accuracy in retrieval process is the main challenge of the work. The retrieval results of CBIR system can be enhanced by using machine learning mechanisms with relevance feedback for Short Term Learning (STL) and Long-Term Learning (LTL). This paper proposes the relevance feedback system embedded with machine learning and optimization technique for logo recognition. Relevance feedback technique is used as baseline model for logo recognition. Feature set is optimized using particle swarm optimization (PSO) and search process is made intelligent by incorporating self-organizing map (SOM). These techniques improve the basic model as depicted in the results.
The trademark registration process, apparent in all organizations nowadays, deals with recognition and retrieval of similar trademark images from trademark databases. Trademark retrieval is an imperative application area of content-based image retrieval. The main challenges in designing and developing this application area are reducing the semantic gap, obtaining higher accuracy, reducing computation complexity, and subsequently the execution time. The proposed work focuses on these challenges. This paper proposes the relevance feedback system embedded with optimization and unsupervised learning technique as the preprocessing stage, for trademark recognition. The search space is reduced by using particle swam optimization, for optimization of database feature set, which is further followed by clustering using self-organizing map. The relevance feedback technique is implemented over this preprocessed feature set. Experimentation is done using the FlickrLogos-32 PLUS dataset. To introduce variations between the training and query images, transformations are applied to each of the query image, viz. rotation, scaling, and translation of the image. The same query image is tested for various combinations of transformations. The proposed technique is invariant to various transformations, with significant performance as depicted in the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.