Pancreatic β cells undergo significant expansion and maturation during human and rodent postnatal development. Here, we used single-cell RNA-seq to characterize gene expression patterns at various stages of mouse islet cell development and uncovered a population of cells that is most abundant during the early postnatal period. This cell population lacks expression of FLTP and expresses PDGF receptors. Each of these conditions have previously been associated with proliferative capacity in β cells suggesting that we have identified the proliferative competent of β cell mass expansion. The subpopulation co-express many endocrine lineage-specific genes and exhibits a downregulation of genes associated with mitochondrial oxidative phosphorylation and global protein synthesis. It has upregulated activity of genes in the Wnt, Hippo, PDGF, and Notch pathways and has a significantly higher proliferation potential than the more mature β population. We show that activity of the Notch pathway is required in postnatal β cell expansion where it serves to maintain an undifferentiated endocrine state in the polyhormonal cell population. Collectively, our study identifies a proliferative, progenitor-like cell subpopulation in the postnatal islet as the source of postnatal β cell expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.