Consequential decision-making typically incentivizes individuals to behave strategically, tailoring their behavior to the specifics of the decision rule. A long line of work has therefore sought to counteract strategic behavior by designing more conservative decision boundaries in an effort to increase robustness to the effects of strategic covariate shift.We show that these efforts benefit the institutional decision maker at the expense of the individuals being classified. Introducing a notion of social burden, we prove that any increase in institutional utility necessarily leads to a corresponding increase in social burden. Moreover, we show that the negative externalities of strategic classification can disproportionately harm disadvantaged groups in the population.Our results highlight that strategy-robustness must be weighed against considerations of social welfare and fairness.
We show through theory and experiment that gradient-based explanations of a model quickly reveal the model itself. Our results speak to a tension between the desire to keep a proprietary model secret and the ability to offer model explanations.On the theoretical side, we give an algorithm that provably learns a two-layer ReLU network in a setting where the algorithm may query the gradient of the model with respect to chosen inputs. The number of queries is independent of the dimension and nearly optimal in its dependence on the model size. Of interest not only from a learning-theoretic perspective, this result highlights the power of gradients rather than labels as a learning primitive.Complementing our theory, we give effective heuristics for reconstructing models from gradient explanations that are orders of magnitude more query-efficient than reconstruction attacks relying on prediction interfaces. arXiv:1807.05185v1 [stat.ML]
No abstract
Intuitively, obedience -following the order that a human gives -seems like a good property for a robot to have. But, we humans are not perfect and we may give orders that are not best aligned to our preferences. We show that when a human is not perfectly rational then a robot that tries to infer and act according to the human's underlying preferences can always perform better than a robot that simply follows the human's literal order. Thus, there is a tradeoff between the obedience of a robot and the value it can attain for its owner. We investigate how this tradeoff is impacted by the way the robot infers the human's preferences, showing that some methods err more on the side of obedience than others. We then analyze how performance degrades when the robot has a misspecified model of the features that the human cares about or the level of rationality of the human. Finally, we study how robots can start detecting such model misspecification. Overall, our work suggests that there might be a middle ground in which robots intelligently decide when to obey human orders, but err on the side of obedience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.