Sucralose, a chlorinated carbohydrate, is used as an artificial sweetener in more than 80 countries and in excess of 4,000 products. Thus far, minimal research has been done on the degradation and fate of sucralose in municipal wastewater treatment plants (WWTPs). We collected samples from WWTPs and surface waters in Arizona, United States. The average sucralose concentration of seven WWTP effluents was 2,800 ± 1,000 ng/L. Similarly, surface waters in Arizona contained sucralose at concentrations up to 300 ± 30 ng/L, which corroborates sucralose discharge from WWTPs into the environment. Biological degradation and chemical oxidation processes were evaluated to remove or transform sucralose under potential WWTP operation scenarios. Sucralose did not degrade in aerobic or anaerobic biological reactors, either metabolically or co-metabolically (in the presence of sucrose), after 42-62 days of experiments. Prolonged exposure to ultraviolet radiation did not oxidize sucralose significantly, and chlorine and ozone addition led only to slow sucralose oxidation. Sucralose is not expected to degrade by free chlorine or ozone under typical WWTP operational conditions. Our results suggest that no significant sucralose degradation occurs in WWTPs, that it is present in their effluent waters, and that it reaches environmental water sources. We report for the first time the presence of sucralose in U.S. inland surface waters. Our measurements of sucralose concentrations in WWTP effluents and surface waters also confirm the low degradability of sucralose.
Water is one of the naturally occurring vital constituent of the ecosystem which supports all life activities. Fresh water is a source of drinking water and is getting polluted by the discharge of domestic sewage, industrial effluents and anthropogenic activities. Analysis of Physico-Chemical parameters of Kunigal tank, Tumkur district was done during the period of July-2014 to December-2014.The water samples were collected on the monthly basis from five sampling sites. The analysis was carried out for the parameters like Temperature, pH, Electrical conductivity, Turbidity, Chlorides, Nitrates, Sulphates, Phosphates, and Biological Oxygen Demand (BOD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.