In this work we study the influence of pH on the optical and structural properties of SnS thin films. The films were grown on the glass substrate using chemical bath deposition method. Hydrous tin chloride and thioacetamide were used as cationic and anionic precursors respectively. The pH of the solution was changed using Ammonia. The film was prepared at five different pH values 9.2, 9.3, 9.4, 9.5 and 9.6. The optical and structural properties were studied using UV Visible spectrophotometer and XRD. From optical characterisation it was found that the band gap decreases as the pH increases from 9.2 to 9.5. The crystallanity of the film increased as the pH value increased.
Thin films of SnS were deposited chemically, and they are annealed at four different temperatures: 100 °C, 150 °C, 200 °C, and 250 °C. X-ray diffraction, Raman analysis, UV-visible spectroscopy, field emission scanning electron microscopy, and energy dispersive spectroscopy were used to investigate the impact of annealing temperature on the structural, optical, morphological, and chemical properties of thin films. As the annealing temperature rose, it was seen from the XRD patterns that the crystallinity of SnS films improved. At 250 °C, the film was almost evaporated, and the XRD pattern showed no peaks at all. The lattice strain and crystallite size were computed from the WilliamsonHall plots. The crystallite size increased and the lattice strain decreased with the increase in the annealing temperature. According to optical investigations, the samples' optical bandgap shrank as the annealing temperature rose. Morphological studies showed the formation of well-adhered films, and as the annealing temperature increased, the film became denser and more continuous with larger grains. The atomic weight percentage of sulphur decreased as the annealing temperature increased, according to the EDS analysis. Photovoltaic structures with the configuration ITO/SnS/CdS/Ag were fabricated. From the I-V characteristics, it was observed that the cell structure formed with SnS annealed at 200 °C showed better cell performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.