This paper proposed simple and accurate threshold voltage (V TH ) extraction techniques, which can be directly adaptable to various semiconductor technologies ranging from deep sub-micron complementary metal-oxide-semiconductor to large-area thin-film transistor devices. These techniques are developed using multiple circuits, namely, a dynamic source follower, an inverter with a diode-connected load and a current mirror topology, which allow a direct determination of V TH . As the proposed techniques are experimented with large-area emerging technologies, which have a stable single type (n-type) transistor, all the designs employed in this work are confined to only n-type transistors for a fair comparison. The semiconductor technologies under consideration are standard complementary metal-oxide-semiconductor (65 and 130 nm) and oxide (indium-gallium-zinc-oxide and zinc-tin-oxide) thin-film transistors. In order to validate the accuracy of the proposed techniques, extracted V TH from these methods are compared against the value from linear transfer characteristics. The resulting relative error is within 5%, reinforcing proposed techniques suitability to different semiconductor technologies ranging from deep sub-micron to large-area transistors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.