The orf3a (also called X1 or U274) gene is the largest unique open reading frame in the severe acute respiratory syndrome coronavirus genome and has been proposed to encode a protein with three transmembrane domains and a large cytoplasmic domain. Recent work has suggested that the 3a protein may play a structural role in the viral life cycle, although the mechanisms for this remain uncharacterized. Here, the expression of the 3a protein in various in vitro systems is shown, it has been localized to the Golgi region and its membrane topology in transfected cells has been confirmed. Three potential caveolin-1-binding sites were reported to be present in the 3a protein. By using various biochemical, biophysical and genetic techniques, interaction of the 3a protein with caveolin-1 is demonstrated. Any one of the potential sites in the 3a protein was sufficient for this interaction. These results are discussed with respect to the possible roles of the 3a protein in the viral life cycle.
Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.
Toll-like receptor (TLR)-10 remains an orphan receptor without well-characterized ligands or functions. Here, we reveal that TLR10 is predominantly localized to endosomes and binds dsRNA in vitro at endosomal pH, suggesting that dsRNA is a ligand of TLR10. Recognition of dsRNA by TLR10 activates recruitment of myeloid differentiation primary response gene 88 for signal transduction and suppression of interferon regulatory factor-7 dependent type I IFN production. We also demonstrate crosstalk between TLR10 and TLR3, as they compete with each other for dsRNA binding. Our results suggest for the first time that dsRNA is a ligand for TLR10 and propose novel dual functions of TLR10 in regulating IFN signaling: first, recognition of dsRNA as a nucleotide-sensing receptor and second, sequestration of dsRNA from TLR3 to inhibit TLR3 signaling in response to dsRNA stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.