The kinase RIP1 acts in multiple signaling pathways to regulate inflammatory responses and it can trigger both apoptosis and necroptosis. Its kinase activity has been implicated in a range of inflammatory, neurodegenerative, and oncogenic diseases. Here, we explore the effect of inhibiting RIP1 genetically, using knock-in mice that express catalytically inactive RIP1 D138N, or pharmacologically, using the murine-potent inhibitor GNE684. Inhibition of RIP1 reduced collagen antibodyinduced arthritis, and prevented skin inflammation caused by mutation of Sharpin, or colitis caused by deletion of Nemo from intestinal epithelial cells. Conversely, inhibition of RIP1 had no effect on tumor growth or survival in pancreatic tumor models driven by mutant Kras, nor did it reduce lung metastases in a B16 melanoma model. Collectively, our data emphasize a role for the kinase activity of RIP1 in certain inflammatory disease models, but question its relevance to tumor progression and metastases.
Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to optimize for CNS druglike molecules, we came to focus on the di(pyridin-2-yl)amines because of their combination of desirable potency and good brain penetration following oral dosing. Our lead inhibitor GNE-3511 (26) displayed concentration-dependent protection of neurons from degeneration in vitro and demonstrated dose-dependent activity in two different animal models of disease. These results suggest that specific pharmacological inhibition of DLK may have therapeutic potential in multiple indications.
Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.