Organic light-emitting devices (OLEDs) have garnered significant research attention owing to their immense application prospects in leading technologies for full-color flat panel displays and eco-friendly solid-state lighting. They demonstrate exceptional features such as mercury-free construction, wide viewing angle, superior color quality and captivating flexibility. The requirements of light-emitting organic materials pertaining to high stability, lifetime and luminescence quantum yield, combined with the fabrication of devices with high performance efficiency, are highly challenging. Rational molecular design of 1,8-naphthalimide (NI) derivatives can offer quite promising results in achieving standard-light-emitting materials with a wide range of colors for OLED applications. This review is mainly focused on the synthesis and usage of varyingly substituted NI frameworks as luminescent host, dopant, hole-blocking and electron-transporting materials for OLEDs that emit not only red, orange, green and blue colors, but also function as white emitters, which can really have an impact on reducing the energy consumption. The future prospects that could be explored to improve the research in the highly promising field of OLEDs are also discussed.
Graphical abstract
Optoelectronics is an active area of research and, for few decades, development of different semiconducting materials with a wide emission window has attracted researchers. Organic light emitting diodes (OLEDs) are primarily utilized in displays and light sources that greatly contribute towards the conservation of energy and do not need a backlight for displays. Development in device efficiency, lifetime and stability is now a major concern in this particular application, and designing efficient material for OLEDs has been an active field of research for decades. Metal-organic compounds possess different optical and electronic properties due to metal and organic ligand interactions which are primarily used in OLEDs. This review is mainly focused on the Schiff bases and their metal chelates as a pure emitting layer or as a dopant material for the fabrication of R/G/B/white emitting devices. Moreover, future prospects to explore further to advance research in the OLED arena are also discussed.
Graphic Abstract
There is always a need for efficient luminescent materials with simple synthesis and possible ease of hydrogen atom or functional group manipulation for use in different optoelectronic and biological applications. However, for certain real-world uses aggregation caused quenching effect of luminophores in their solid/aggregate state is undesirable, and is a cause of concern in areas, wherein the solid-state optical performance is more crucial. In this regard, chalcones have been explored for their ability to display aggregation-induced emission (AIE) or aggregation-induced enhanced emission (AIEE), which can be of practical use. This article is thus focused on an integrated evidence-based report on the AIE/AIEE-active chalcone systems for potential technological and biological applications.
Graphic abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.