Use of Artificial intelligence (AI) has increased in the healthcare in many sectors. Organizations from health care of different sizes, types and different specialties are now a days more interested in how artificial intelligence has evolved and is helping patient needs and their care, also reducing costs, and increasing efficiency. This study explores the implications of AI on healthcare management, and challenges involved with using AI in healthcare along with the review of several research papers that used AI models in different sectors of healthcare like Dermatology, Radiology, Drug design etc.
Background: Skin cancer classificationusing convolutional neural networks (CNNs) proved better results in classifying skin lesions compared with dermatologists which is lifesaving in terms of diagnosing. This will help people diagnosetheir cancer on their own by just installing app on mobile devices. It is estimated that 6.3 billion people will use the subscriptions by the end of year 2021[28] for diagnosing their skin cancer. Objective: This study represents review of many research articles on classifying skin lesions using CNNs. With the recent enhancement in machine learning algorithms, misclassification rate of skin lesions has reduced compared to a dermatologist classifying them.In this article we discuss how using CNNs has evolved in successfully classifying skin cancer type, and methods implemented, and the success rate. Even though Deep learning using CNN has advantages compared to a dermatologist, it also has some vulnerabilities, in terms of misclassifying images under some Criteria, and situations. We also discuss about those Vulnerabilities in this review study. Methods: We searched theScienceDirect, PubMed,Elsevier, Web of Science databases and Google Scholar for original research articles that are published. We selected papers that have sufficient data and information regarding their research, and we created a review on their approaches and methods they have used. From the articles we searched online So far no review paper has discussed both opportunities and vulnerabilities that existed in skin cancer classification using deep learning. Conclusions: The improvements in machine learning, Deep learning techniques, can avoid human mistakes that could be possible in misclassifying and diagnosing the disease. We will discuss, how Deep learning using CNN helped us and its vulnerabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.