Mental Stress estimation is an important feature to be derived in health related diagnostic activity. It has been observed that the stress has a major effect on heart functioning. And therefore, ecg should be the major source of stress variation and can be analyzed in various ways in order to extract the effect of mental stress. In the presented work, the ecg is analyzed using the statistical parameters set (energy, entropy, power, standard deviation and covariance). The parameters are not directly computed form the ecg itself. The ecg is first decomposed to level-2 using BIOR-3.9 wavelet transform to reduce the dimensionality of the ecg sample size. The level-1 and level-2 parameters are used to derive the mental stress levels as normal (N), hyper-1 (H-1), hyper-2 (H-2), depression-1 (D-1) and depression-2 (D-2). On parameter analysis, it has been observed that the energy and entropy are the two parameters that show an effective variation in values when normal to depression or normal to hyper case is observed. Therefore, the energy and entropy values are used for rule making and learning of the system in order to derive the mental stress levels
Mental stress quantification using fuzzy analysis of ecg parameters is presented here. ECG signal is decomposed using the BIOR-3.9 wavelet family upto three levels. The approximates signals are used for computation ecg parameters like energy, entropy, power, standard deviation, mean and covariance. A fuzzy classifier is designed using trimf function as associate membership in fuzzy analysis. The ecg data base is taken from MIT data base web site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.