Communication between different IP cores in MPSoCs and HMPs often results in clock domain crossing. Asynchronous network on chip (NoC) support communication in such heterogeneous set-ups. While there are a large number of tools to model NoCs for synchronous systems, there is very limited tool support to model communication for multi-clock domain NoCs and analyse them. In this article, we propose the
P
luggable
A
synchronous
NE
twork on Chip (PANE) simulator, which allows system-level simulation of asynchronous network on chip (NoC). PANE allows design space exploration of synchronous, asynchronous, and mixed synchronous-asynchronous(heterogeneous) NoC for various system-level NoC parameters such as packet latencies, throughput, network saturation point and power analysis. PANE supports a large range of NoC configurations—routing algorithms, topologies, network sizes, and so on—for both synthetic and real traffic patterns. We demonstrate the application of PANE by using synchronous routers, asynchronous routers, and a mix of asynchronous and synchronous routers. One of the key advantages of PANE is that it allows a seamless transition from synchronous to asynchronous NoC simulators while keeping pace with the developments in synchronous NoC tools as they can be integrated with PANE.
several professional articles and five books. One of his books has been translated into Chinese and another one into Greek. His recent book "TinyAVR Microcontroller Projects for the Evil Genius", published by McGraw Hill International consists of more than 30 hands-on projects and has been translated into Chinese and Russian. He is a licensed radio amateur with a call sign VU2NOX and hopes to design and build an amateur radio satellite in the near future. , NSIT pursuing various projects in the field of Embedded Systems. While at NSIT he has mentored several student projects and has contributed to the design and development of several educational kits and pedagogy material based on a variety of microcontroller platforms. His research interests include embedded systems, intelligent control and internet of things.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.