In this study, a potent uricase producing organism was isolated by a thorough screening and identified as
Bacillus subtilis
strain SP6 by using 16s rDNA sequencing. Response surface methodological optimization was employed for the enhanced production of uricase from newly isolated
Bacillus subtilis
strain SP6. In media optimization studies, Plackett Burman (PB) design was used for the selection of the critical media components; which were further optimized using central composite design (CCD). Lactose, soya peptone, uric acid and FeSO
4
.7H
2
O were found to be the critical factors influencing the enzyme production. Optimum uricase production with these factors was deduced using central composite design. Significant level of the factors were 12.2 g/L of lactose, 12.79 g/L of soya peptone, 2.55 g/L of uric acid and 0.00325 g/L FeSO
4
.7H
2
O. Use of statistical optimization upsurges uricase yield from 1.2 U/ml to 15.87 U/ml enhancing the overall production by 13.23 fold; which confirms that the model is effective for process optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.