The development of textile finishing with improved functional properties has been a growing interest among industry and scientists worldwide. The recent global pandemic also enhanced the awareness amongst many toward improved hygiene and the use of antimicrobial textiles. Generally, natural herbal components are known to possess antimicrobial properties which are green and eco-friendly. This research reports a novel and innovative method of developing and optimising nano-emulsions using two combinations of herbal extracts produced from Moringa oleifera, curry leaf, coconut oil (nano-emulsion 1) and other using Aegle marmelos with curry leaf and coconut oil (nano-emulsion 2). Nano-emulsions were optimised for their pH, thermal stability, and particle size, and percentage add-on. Organic cotton fabrics (20 and 60 gsm) were finished with nano-emulsions using continuous and batch processes and characterised for their surface morphology using scanning electron microscopy, energy dispersive X-ray (EDX) analysis and Fourier transform infrared spectroscopy (FTIR) analysis. The finished fabrics were evaluated for their Whiteness Index, assessed for antimicrobial resistance against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) using AATCC 100 and 147 methods. In addition, fabrics were assessed for their antifungal efficacy (AATCC 30), tensile strength and air permeability. Results suggested that finished organic fabrics with nano-emulsions had antimicrobial resistance, antifungal, wash fastness after 20 washing cycles, and sufficient strength. This novel finishing method suggests that organic cotton fabrics treated with nano-emulsions can be used as a durable antimicrobial textile for healthcare and hygiene textiles.
Abbreviations: PIT, phase inversion temperature; PEG, poly ethylene glycol; CMC, carboxy methyl cellulose; HLB, hydrophile lipophile balance Essential oils are volatile, natural, complex compounds characterized by a strong odor and are formed by aromatic plants as secondary metabolites. An oil is "essential" in the sense that it contains the "essence of" the plant's fragrance-the characteristic fragrance of the plant from which it is derived known for their antiseptic, i.e. bactericidal, virucidal, fungicidal, medicinal and fragrance properties etc. They are used in embalmment, preservation of foods and as antibacterial, analgesic, sedative, anti-inflammatory, spasmolytic J Textile Eng Fashion Technol. 2017;1(2):42-47 42 AbstractFinishing of various textile fabrics to make it more marketable and its demand is increasing due to global competition, and increasing globalization has created many challenges to the textile researchers and industrialist. The rapid growth in technical textiles and their end uses has generated many opportunities for the application of innovative finishes. The next phase of growth and development of this industry will be focused on three main aspects:a. Value-added products with enhanced functionality b. Apparels c. Sustainable products.
Plant-based antimicrobial finishing of textiles is comparable in efficacy, can replace synthetic antimicrobial agents, and is environmentally safe and effective. However, developing durable antimicrobial finishes on cotton-based textiles is a challenge. This research reports the development and characterization of nano-emulsions obtained from Karanja [ Milletia pinnata] and Gokhru [ Pedalium murex Linn] plants. The nano-emulsions were produced using Milletia pinnata, coconut oil, and curry leaves (nano-emulsion 1) and Pedalium murex, coconut oil, and curry leaves (nano-emulsion 2). The nano-emulsions were characterized for their thermal stability, particle size, pH, and percentage add-on. Two different oils, with surfactant (polysorbate) ratios [1:1 and 1:2], were finished on organic cotton fabrics using a batch process. Scanning electron microscopy images were evaluated to determine the surface morphology of the finished fabrics, and gas chromatography-mass spectrometry images of nano-emulsions were studied to determine the specific chemical constituents of nano-emulsions 1 and 2. The finished fabrics were evaluated for their antimicrobial resistance using various gram-positive bacteria [ Staphylococcus aureus, Staphylococcus epidermidis], which are found on human skin and cause nosocomial infections, gram-negative bacteria [ Escherichia coli and Klebsiella pneumoniae], which cause urinary tract infections, and fungi [ Aspergillus niger]. The antimicrobial resistance was in the range of 98.62–99.87%, even after 10 washes, indicating that the finishes were effective and durable. The finished and unfinished fabrics were also evaluated for their performance properties, tensile strength, and moisture vapor transmission rate, and the results indicated good durability and comfort characteristics. Our findings highlight the potential of plant-based antimicrobial agents for durable finishing of cotton textiles with antimicrobial properties, thus preventing the spread of infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.