According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%. According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%.
Global warming has caused a significant increment in surface temperature around the world, including Bangladesh. In this study, the temperature data of Bangladesh over the past 100 years has been analyzed to see the temperature increment pattern. It has been seen that the average temperature has risen by 10C over the last century. Using daily average temperature data of Bangladesh, machine learning-based time series forecasting model has been developed to predict the future temperature of Bangladesh. The model can predict the minimum, maximum, and average temperatures of any year in the future. This has been treated as a regression problem and Linear, Polynomial, and Support Vector Regression have been proposed to build the prediction model. The proposed model has a mean square error of 0.00470C which is a good margin for such a model. Using the model, the average temperature of Bangladesh is predicted over the next hundred years. Journal of Engineering Science 11(1), 2020, 83-91
According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%. According to the recent surveys, breast cancer has become one of the major causes of mortality rate among women. Breast cancer can be defined as a group of rapidly growing cells that lead to the formation of a lump or an extra mass in the breast tissue which consequently leads to the formation of tumor. Tumors can be classified as malignant (cancerous) or benign (non-cancerous). Feature selection is an important parameter in determining the classification systems. Machine learning methods are the most commonly used methods among researchers for breast cancer diagnosis. This paper proposes to investigate the WBCD (Wisconsin Breast Cancer Dataset) which comprises of 683 patients and implements the chosen features to train the back propagation neural network. The performance is then analyzed on the basis of classification accuracy, sensitivity, specificity, positive and negative predictor values, receiver operating characteristic curves and confusion matrix. A total of 9 features has been used to classify breast cancer with an accuracy of 99.27%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.