In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.
A mesocosm study was evaluated to elucidate the influence of amendments such as microbial consortium, plant (Vetiveria zizanioides), bulking agent (wheat husk) and nutrients on remediation of oil sludge over a period of 90 days. The experiment was conducted in a 15 m 2 plot which was divided into eight units comprising of soil sludge mixture (1:1) at CSIR-NEERI premises. During the experiment, oil degradation was estimated gravimetrically and polyaromatic hydrocarbons (PAHs) were quantified on GC-MS. Additionally, dehydrogenase activity was also monitored. The treatment integrated with bulking agent, nutrients, consortium and plant resulted in 28-fold increased dehydrogenase activity and complete mineralization of higher PAHs. Furthermore, 72.8 % total petroleum hydrocarbons (TPH) degradation was observed in bulked treatment with plant, nutrients and consortium followed by 69.6 and 65.4 % in bioaugmented treatments with and without nutrients, respectively, as compared to control (33.4 %). A lysimeter study was also conducted simultaneously using Vetiver and consortium to monitor groundwater contamination by heavy metals in oil sludge which showed a marked decrease in the concentrations of metals such as lead and cadmium in leachates. This study validates a holistic approach for remediation of oil sludge contaminated soils/sites which is a burning issue since decades by the use of microbe assisted phytoremediation technology which not only solves the problem of oil contamination but also takes care of heavy metal contamination.
A comparative study was carried out to evaluate the efficiency of different substrate materials along with macrophytes Typha latifolia and Cyperus rotundus in treating domestic wastewater intended for reuse in agriculture. The study was conducted over a period of 6 months with different retention times, and observations were taken twice per month. One-way analysis of variance and Tukey's Honest Significant Difference (HSD) tests were used to determine statistical significant differences between experimental columns. Treatment with T. latifolia planted in sand and mix substrate with 4-day retention time remarkably reduced the concentration of all bacterial pathogens. Log reductions observed were approximately 5.01 and 4.82 for total coliform (TC), 4.46 and 3.93 for Escherichia coli, and 5.52 and 5.48 for Shigella, respectively. Moreover, these treatments were also efficient in completely removing fecal coliform (FC) and Salmonella.Maximum parasites were removed by the treatment having sand alone as a substrate containing C. rotundus, but the difference was not significant from those planted with T. latifolia in the same substrate. The results suggest that T. latifolia aids in bacterial pathogens removal, while C. rotundus aids in parasites removal. Thus, wastewater treatment through constructed wetland having mix plantation of these species along with sand can eliminate some of the major enteric pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.