The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria—and also mobile genetic elements and bacteriophages—form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.
Eclipta alba can be found growing wild in fallow lands of Bangladesh where it is considered as a weed by farmers. Traditional medicinal systems of the Indian subcontinent countries as well as tribal practitioners consider the plant to have diverse medicinal values and use it commonly for treatment of gastrointestinal disorders, respiratory tract disorders (including asthma), fever, hair loss and graying of hair, liver disorders (including jaundice), skin disorders, spleen enlargement, and cuts and wounds. The plant has several phytoconstituents like wedelolactone, eclalbasaponins, ursolic acid, oleanolic acid, luteolin, and apigenin. Pharmacological activities of plant extracts and individual phytoconstituents have revealed anticancer, hepatoprotective, snake venom neutralizing, anti-inflammatory, and antimicrobial properties. Phytoconstituents like wedelolactone and ursolic and oleanolic acids as well as luteolin and apigenin can form the basis of new drugs against cancer, arthritis, gastrointestinal disorders, skin diseases, and liver disorders.
Inflammatory bowel disease-related colorectal cancer (IBD-CRC) is one of the most serious complications of IBD contributing to significant mortality in this cohort of patients. IBD is often associated with diet and lifestyle-related gut microbial dysbiosis, the interaction of genetic and environmental factors, leading to chronic gut inflammation. According to the “common ground hypothesis”, microbial dysbiosis and intestinal barrier impairment are at the core of the chronic inflammatory process associated with IBD-CRC. Among the many underlying factors known to increase the risk of IBD-CRC, perhaps the most important factor is chronic persistent inflammation. The persistent inflammation in the colon results in increased proliferation of cells necessary for repair but this also increases the risk of dysplastic changes due to chromosomal and microsatellite instability. Multiple pathways have been identified, regulated by many positive and negative factors involved in the development of cancer, which in this case follows the ‘inflammation-dysplasia-carcinoma’ sequence. Strategies to lower this risk are extremely important to reduce morbidity and mortality due to IBD-CRC, among which colonoscopic surveillance is the most widely accepted and implemented modality, forming part of many national and international guidelines. However, the effectiveness of surveillance in IBD has been a topic of much debate in recent years for multiple reasons — cost-benefit to health systems, resource requirements, and also because of studies showing conflicting long-term data. Our review provides a comprehensive overview of past, present, and future perspectives of IBD-CRC. We explore and analyse evidence from studies over decades and current best practices followed globally. In the future directions section, we cover emerging novel endoscopic techniques and artificial intelligence that could play an important role in managing the risk of IBD-CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.