The outbreak of COVID-19 has spread rapidly across the globe, greatly affecting how humans as a whole interact, work and go about their daily life. One of the key pieces of personal protective equipment (PPE) that is being utilised to return to the norm is the face mask or respirator. In this review we aim to examine face masks and respirators, looking at the current materials in use and possible future innovations that will enhance their protection against SARS-CoV-2. Previous studies concluded that cotton, natural silk and chiffon could provide above 50% efficiency. In addition, it was found that cotton quilt with a highly tangled fibrous nature provides efficient filtration in the small particle size range. Novel designs by employing various filter materials such as nanofibres, silver nanoparticles, and nano-webs on the filter surfaces to induce antimicrobial properties are also discussed in detail. Modification of N95/N99 masks to provide additional filtration of air and to deactivate the pathogens using various technologies such as low- temperature plasma is reviewed. Legislative guidelines for selecting and wearing facial protection are also discussed. The feasibility of reusing these masks will be examined as well as a discussion on the modelling of mask use and the impact wearing them can have. The use of Artificial Intelligence (AI) models and its applications to minimise or prevent the spread of the virus using face masks and respirators is also addressed. It is concluded that a significant amount of research is required for the development of highly efficient, reusable, anti-viral and thermally regulated face masks and respirators.
Surface contamination by microbes is a major public health concern. A damp environment is one of potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO2) can effectively curb this growing threat. Metal-doped titania in anatase phase has been proven as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu)-doped TiO2 (Cu-TiO2) was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO2 was carried out via sol-gel technique. Cu-TiO2 further calcined at various temperatures (in the range of 500–700 °C) to evaluate the thermal stability of TiO2 anatase phase. The physico-chemical properties of the samples were characterized through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV–visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO2 was maintained well, up to 650 °C, by the Cu dopant. UV–vis results suggested that the visible light absorption property of Cu-TiO2 was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasize the introduction of Cu+ and Cu2+ ions by replacing Ti4+ ions in the TiO2 lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9999%) was attained in 30 min of visible light irradiation by Cu-TiO2.
The thermal stability of anatase titanium dioxide (TiO2) is a prerequisite to fabricate photocatalyst coated indoor building materials for use in antimicrobial and self-cleaning applications under normal room light illumination. Metal doping of TiO2 is an appropriate way to control the anatase to rutile phase transition (ART) at high processing temperature. In this present work, ART of indium (In) doped TiO2 (In-TiO2) was investigated in detail in the range of 500 °C -900 °C. In-TiO2 (In mol % = 0 to 16) was synthesized via a modified solgel approach. These nanoparticles were further characterized by means of powder X-ray diffraction (XRD), Raman, photoluminescence (PL), transient photocurrent response, and Xray photoelectron spectroscopy (XPS) techniques. XRD results showed that the anatase phase was maintained up to 64 % by 16-mol % of In doping at 800 °C of calcination temperature.XPS results revealed that the binding energies of Ti 4+ (Ti 2p1/2 and Ti 2p3/2) were red-shifted by In doping. The influence of In doping on the electronic structure and oxygen vacancy formation of anatase TiO2 was studied using density functional theory corrected for on-site Coulomb interactions (DFT+U). First principles results showed that the charge compensating oxygen vacancies form spontaneously at sites adjacent to the In dopant. DFT+U calculations revealed the formation of In -5s states in the band gap of the anatase host. The formation of In2O3 at the anatase surface was also examined using a slab model of the anatase (101)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.