Electrolyte design is critical for enabling next-generation batteries with higher energy densities. Hydrofluoroether (HFE) solvents have drawn a lot of attention as the electrolytes based on HFEs showed great promise to deliver highly desired properties, including high oxidative stability, ionic conductivity, as well as enhanced lithium metal compatibility. However, the structure-dynamics-properties relationships and design principles for high-performance HFE solvents are still poorly understood. Herein, we proposed four novel asymmetric HFE designs by systematically varying polyether and fluorocarbon structural building blocks. By leveraging molecular dynamics (MD) modeling to analyze the solvation structures and predict the properties of the corresponding 1 M lithium bis(fluorosulfonyl)imide (LiTFSI) solutions, we downselected the most promising candidate based on high conductivity, solvation species distribution, and oxidative stability for extensive electrochemical characterizations. The formulated electrolyte demonstrated properties consistent with the predictions from the simulations and showed muchimproved capacity retention as well as Coulombic efficiency compared to the baseline electrolytes when cycled in lithium metal cells. This work exemplifies the construction of candidate electrolytes from building block functional moieties to engineer fundamental solvation structures for desired electrolyte properties and guide the discovery and rational design of new solvent materials.
Solid-liquid interfaces are important in a range of chemical, physical and biological processes, but are often not fully understood owing to the lack of high-resolution characterization methods that are compatible with both solid and liquid components. For example, the related processes of dendritic deposition of lithium metal and the formation of solid-electrolyte interphase layers are known to be key determinants of battery safety and performance in high-energy-density lithium-metal batteries. But exactly what is involved in these two processes, which occur at a solid-liquid interface, has long been debated because of the challenges of observing such interfaces directly. Here we adapt a technique that has enabled cryo-transmission electron microscopy (cryo-TEM) of hydrated specimens in biology-immobilization of liquids by rapid freezing, that is, vitrification. By vitrifying the liquid electrolyte we preserve it and the structures at solid-liquid interfaces in lithium-metal batteries in their native state, and thus enable structural and chemical mapping of these interfaces by cryo-scanning transmission electron microscopy (cryo-STEM). We identify two dendrite types coexisting on the lithium anode, each with distinct structure and composition. One family of dendrites has an extended solid-electrolyte interphase layer, whereas the other unexpectedly consists of lithium hydride instead of lithium metal and may contribute disproportionately to loss of battery capacity. The insights into the formation of lithium dendrites that our work provides demonstrate the potential of cryogenic electron microscopy for probing nanoscale processes at intact solid-liquid interfaces in functional devices such as rechargeable batteries.
High-energy rechargeable batteries based on earth-abundant materials are important for mobile and stationary storage technologies. Rechargeable sodium–sulfur batteries able to operate stably at room temperature are among the most sought-after platforms because such cells take advantage of a two-electron-redox process to achieve high storage capacity from inexpensive electrode materials. Here we report a room-temperature sodium–sulfur battery that uses a microporous carbon–sulfur composite cathode, and a liquid carbonate electrolyte containing the ionic liquid 1-methyl-3-propylimidazolium-chlorate tethered to SiO2 nanoparticles. We show that these cells can cycle stably at a rate of 0.5 C (1 C=1675, mAh g−1) with 600 mAh g−1 reversible capacity and nearly 100% Coulombic efficiency. By means of spectroscopic and electrochemical analysis, we find that the particles form a sodium-ion conductive film on the anode, which stabilizes deposition of sodium. We also find that sulfur remains interred in the carbon pores and undergo solid-state electrochemical reactions with sodium ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.