Biological control has been accepted as an eco-friendly, technically appropriate, economically viable and socially acceptable method of pest management. Various technologies and methods have been adapted in order to genetically improve the performances of natural enemies (predators, parasitoids and pathogens). Artificial selection of various strains under different conditions, hybridization (heterosis) of different strains and rDNA technologies has been adopted towards these directions. Various traits like tolerant to pesticidal stress, tolerant to extreme abiotic stresses, shortening developmental rate, enhancing progeny production, altering sex ratio and altering host or habitat preferences could enhance the effectiveness of natural enemies. The genetically improved natural enemies (predators, parasitoids and pathogens) might be the next level biological weapons against the pest populations in agricultural systems.
Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study’s outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.
The rise in the world’s food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.
Cabbage (Brassicae oleracea var. capitata Linn.) is one of the most important and extensively cultivated vegetable crop because of its nutritional and economical values for producers and consumer point of view, respectively. The crop is prone for infestation by a number of insect pests consisting sucking and defoliating insects starting from germination to harvesting stage of the crop. In India, the diamond back moth, Plutella xylostella Linneaus and cabbage butterfly, Pieris brassicae Linneaus are the major Lepidopterous pests of cabbage. Adjusting planting dates can sometimes help to avoid certain insect infestations and reduce the need for chemical control. Planting dates influence the crop performance due to changed biotic and abiotic factors. The time of planting of cabbage, which is a season bound crop, has profound effect on the incidence of diamond back moth and cabbage butterfly. Several insecticides have been recommended through ages to avert pest damage, but some broad-spectrum synthetic organic insecticides and biopesticides are effective for the control of these two Lepidopterous pests.
The discovery of antibiotic to combat bacterial infections, has been a lifesaving discovery. But, gradually due to more dependency and continuous use of antibiotics, instead of becoming a boon, it gradually tends more towards the negative aspect of development of antibiotic resistance. Eventually, the bacteria started developing resistance to the antibiotics. This has opened the door for researchers to learn more about how antibiotic resistance genes (ARG) evolve and lead to antibiotic resistance in bacteria. The present review focused on the use of two major antibiotics which are widely used now a days (Streptomycin and Oxytetracycline) emphasizing more on the mechanism of development of resistance in the bacteria and their impact on antibiotic resistance. Researchers are also trying continuously to develop some alternative antimicrobial drugs which will have minimum risk of antibiotic resistance. Antibiotic resistance is a risk that must be considered; else, a bleak future awaits
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.