Soil organic carbon plays an important role in the stability and fertility of soil and is influenced by different management practice. We quantified active and passive carbon pools from total soil organic carbon (TOC) in seven different land use systems of northeast India. TOC was highest (2.75%) in natural forest and lowest in grassland (1.31%) and it decreased with increasing depth in different pools of lability. Very Labile Carbon (VLC) fraction ranged from 36.11 to 42.74% of TOC across different land use system. Active carbon (AC) pool was highest in Wet Rice Cultivation (61.64%) and lowest (58.71%) in natural forest. Higher AC pools (VLC and less labile) in most land use systems barring natural forests suggest that the land use systems in the region are vulnerable to land use change and must adopt suitable management practice to harness carbon sequestration.
We studied the perception of forest-dependent communities on climate change with its associated risk and their adaptation strategies in Mizoram, Northeast India. A total of 360 respondents (household heads) were randomly selected from 24 villages across the three different agro-climatic zones prevalent. The community perceived awareness of climate change phenomena in the region with a positive correlation between age, education and occupation of the respondents. The overall perception of climate change in temperature was medium (0.49), while low for change in precipitation (0.26) and seasonal durability (0.23). The community showed overall low score of perception on risk of climate change (0.10) where risk on livelihood and socioeconomic factors was higher than risk to environment or forest. Perception on impact of climate change was high for forest abiotic ecological factors (0.66) and flora and fauna (0.62), while medium on livelihood of forest-dependent communities (0.44). The majority (more than 75%) of the respondents agreed that human beings are involved and responsible for climate change. Adoption of adaptive strategies to cope climate change ranged from 0.07 to 0.91, amongst which zero tillage, use of traditional knowledge, forest fire prevention, soil and water conservation techniques, agroforestry practices and social forestry are popular. However, rain water harvesting and investments for crop insurance were adopted on low scores clearly implied by the educational and socioeconomic status of the farmers in the majority. The study brings out the knowledge and perceptions to climate change by forest-dependent communities and their adaptive strategies to cope had been assessed.
Bromodomains are evolutionarily conserved structural motifs that recognize acetylated lysine residues on histone tails. They play a crucial role in shaping chromatin architecture and regulating gene expression in various biological processes. Mutations in bromodomains containing proteins leads to multiple human diseases, which makes them attractive target for therapeutic intervention. Extensive studies have been done on BRD4 as a target for several cancers, such as Acute Myeloid Leukemia (AML) and Burkitt Lymphoma. Several potential inhibitors have been identified against the BRD4 bromodomain. However, most of these inhibitors have drawbacks such as non-specificity and toxicity, decreasing their appeal and necessitating the search for novel non-toxic inhibitors. This study aims to address this need by virtually screening natural compounds from the NPASS database against the Kac binding site of BRD4-BD1 using high throughput molecular docking followed by similarity clustering, pharmacokinetic screening, MD simulation, and MM-PBSA binding free energy calculations. Using this approach, we identified five natural product inhibitors having a similar or better binding affinity to the BRD4 bromodomain compared to JQ1 (previously reported inhibitor of BRD4). Further systematic analysis of these inhibitors resulted in the top three hits: NPC268484 (Palodesangren-B), NPC295021 (Candidine), and NPC313112 (Buxifoliadine-D). Collectively, our in silico results identified some promising natural products that have the potential to act as potent BRD4-BD1 inhibitors and can be considered for further validation through future in vitro and in vivo studies.
Bromodomains are evolutionarily conserved structural motifs that recognize acetylated lysine residues on histone tails. They play a crucial role in shaping chromatin architecture and regulating gene expression in various biological processes. Mutations in bromodomains containing proteins leads to multiple human diseases, which makes them attractive target for therapeutic intervention.Extensive studies have been done on BRD4 as a target for several cancers, such as Acute Myeloid Leukemia (AML) and Burkitt Lymphoma. Several potential inhibitors have been identified against the BRD4 bromodomain. However, most of these inhibitors have drawbacks such as nonspecificity and toxicity, decreasing their appeal and necessitating the search for novel non-toxic inhibitors. This study aims to address this need by virtually screening natural compounds from the NPASS database against the Kac binding site of BRD4-BD1 using high throughput molecular docking followed by similarity clustering, pharmacokinetic screening, MD simulation, and MM-PBSA binding free energy calculations. Using this approach, we identified five natural product inhibitors having a similar or better binding affinity to the BRD4 bromodomain compared to JQ1 (previously reported inhibitor of BRD4). Further systematic analysis of these inhibitors resulted in the top three hits: NPC268484 (Palodesangren-B), NPC295021 (Candidine), and NPC313112 (Buxifoliadine-D). Collectively, our in silico results identified some promising natural products that have the potential to act as potent BRD4-BD1 inhibitors and can be considered for further validation through future in vitro and in vivo studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.