A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate). Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC) had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.
This paper presents a comparative environmental assessment of several different green concrete mixes for structural use. Four green concrete mixes were compared with a conventional concrete mix: recycled aggregate concrete with a cement binder, high-volume fly ash concrete with natural and recycled aggregates, and alkali activated fly ash concrete with natural aggregates. All five concrete mixes were designed and experimentally verified to have equal compressive strength and workability. An attributional life cycle assessment, based on the scenario which included construction practice, transport distances, and materials available in Serbia, was performed. When treating fly ash impacts, three allocation procedures were compared: 'no allocation', economic, and mass allocation, with mass allocation giving unreasonably high impacts of fly ash. Normalization and aggregation of indicators was performed and the impact of each concrete mix was expressed through a global sustainability indicator. A sensitivity analysis was also performed to evaluate the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.