We describe a mouse strain in which B cell development relies either on the expression of membrane-bound immunoglobulin (Ig) γ1 or μ heavy chains. Progenitor cells expressing γ1 chains from the beginning generate a peripheral B cell compartment of normal size with all subsets, but a partial block is seen at the pro– to pre–B cell transition. Accordingly, γ1-driven B cell development is disfavored in competition with developing B cells expressing a wild-type (WT) IgH locus. However, the mutant B cells display a long half-life and accumulate in the mature B cell compartment, and even though partial truncation of the Igα cytoplasmic tail compromises their development, it does not affect their maintenance, as it does in WT cells. IgG1-expressing B cells showed an enhanced Ca2+ response upon B cell receptor cross-linking, which was not due to a lack of inhibition by CD22. The enhanced Ca2+ response was also observed in mature B cells that had been switched from IgM to IgG1 expression in vivo. Collectively, these results suggest that the γ1 chain can exert a unique signaling function that can partially replace that of the Igα/β heterodimer in B cell maintenance and may contribute to memory B cell physiology.
CD22 is an inhibitory co-receptor of B cell receptor (BCR)-mediated signalling which binds specifically to glycan ligands containing alpha2,6-linked sialic acids. This interaction modulates the CD22 activity by an unknown mechanism. Mice deficient for ST6GalI, the enzyme that generates alpha2,6-linked sialic acids, show an immunodeficient and opposing phenotype to CD22-deficient mice. By generating mice double-deficient for this receptor/ligand pair, we analysed its influence on B cell maturation and signalling. Both ST6GalI-deficient and ST6GalI x CD22-deficient mice showed normal B cell development, but an impaired marginal zone B cell population in the spleen. Both types of mutant mice also showed a reduced population of bone marrow recirculating B cells, a defect previously detected in CD22-/- mice. In adoptive transfer experiments, a migration defect of wild-type B cells to the bone marrow of ST6GalI-deficient mice was found. This suggests a direct involvement of CD22 and its ligands 2,6Sia in a homing process of recirculating B cells to the bone marrow. Interestingly, defective B cell Ca2+ signalling and proliferation of ST6Gal-/- mice was rescued in ST6GalI x CD22-deficient mice. This points to a new mechanism of BCR signal regulation by CD22 and its ligand.
CD22 is an inhibitory coreceptor for B cell receptor (BCR) signaling. The inhibition is most likely mediated by activation of SHP-1. We found that SLP65/BLNK reaches maximal tyrosine-phosphorylation at earlier time points in CD22 -/-than in wild type B cells upon BCR cross-linking, suggesting that SLP65/BLNK is a substrate of SHP-1. However, in contrast to the defective Ca 2+ mobilization of SLP65/BLNK -/-B cells, there was a clear Ca 2+ response in SLP65/BLNK×CD22 double-deficient B cells. This implies that SLP65/BLNK is not the sole target of SHP-1 in the regulation of the Ca 2+ signaling strength. While SLP65 -/-mice show several blocks of B cell differentiation, in SLP65/BLNK×CD22 double-deficient mice the maturation block of B cells in the spleen was partially rescued. However, the proliferative responses of B cells from both SLP65/BLNK -/-and double-deficient mice were defective after IgM-or CD40-stimulation. These results show that SLP65/BLNK is not absolutely essential for Ca 2+ induction in B cells, because the deficiency of this adapter can be bypassed by the additional deletion of an inhibitory receptor. Furthermore, these experiments suggest that B cell maturation in the spleen is directly dependent on the strength of BCRderived Ca 2+ signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.