SummaryEgMYB2, a member of a new subgroup of the R2R3 MYB family of transcription factors, was cloned from a library consisting of RNA from differentiating Eucalyptus xylem. EgMYB2 maps to a unique locus on the Eucalyptus grandis linkage map and co-localizes with a quantitative trait locus (QTL) for lignin content. Recombinant EgMYB2 protein was able to bind specifically the cis-regulatory regions of the promoters of two lignin biosynthetic genes, cinnamoyl-coenzyme A reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), which contain MYB consensus binding sites. EgMYB2 was also able to regulate their transcription in both transient and stable expression assays. Transgenic tobacco plants over-expressing EgMYB2 displayed phenotypic changes relative to wild-type plants, among which were a dramatic increase in secondary cell wall thickness, and an alteration of the lignin profiles. Transcript abundance of genes encoding enzymes specific to lignin biosynthesis was increased to varying extents according to the position of individual genes in the pathway, whereas core phenylpropanoid genes were not significantly affected. Together these results suggest a role for EgMYB2 in the co-ordinated control of genes belonging to the monolignol-specific pathway, and therefore in the biosynthesis of lignin and the regulation of secondary cell wall formation.
Three pumpkin embryogenic lines were initiated on wounded zygotic embryos cultured on medium with or without 2,4-dichlorophenoxyacetic acid (2,4-D). Somatic embryo development was controlled by the availability of various compounds in the medium: presence/absence of 2,4-D, nitrogen sources. The highest rate of DNA methylation was in the early embryo stages, predominantly on MSC medium with 2,4-D and on auxin-free medium supplemented with 1.0 m M NH(4)Cl. DNA methylation was correlated with early embryo development in a manner that was not exclusively dependent on the presence/absence of exogenous auxin. DNA methylation decreased during embryo maturation on auxin-free MSC medium and on auxin-free MSC supplemented with 12.3 micro M 5-azacytidine (5-azaC). The embryogenic features of the pumpkin tissue were preserved, even after a 2-month treatment with 5-azaC.
In many vascular plants, zygotic reproduction regularly alternates with different types of asexual reproduction, so embryos can develop not only from fertilized egg cells, but also from induced somatic cells through the process of somatic embryogenesis. Although somatic and zygotic embryogenesis are not directly correlated, their common features are presented, demonstrating that the origin and development of the somatic embryo morphologically and physiologically resemble zygotic embryogenesis at certain points. To initiate embryogenesis, both competent egg and somatic cells require activation either by fertilization or specific environmental signals, respectively. During induction of somatic and zygotic embryogenesis, modulation of DNA methylation, activation of particular hormonal and stress-related mechanisms and changes in cell wall properties are triggered. Here, we give an overview and discuss the most recent research in the field of plant somatic and zygotic embryogenesis, with special attention given to the onset of embryogenesis and early embryo development as well as to embryogenesisrelated interconnections between plant hormones, stress responses, DNA methylation and regulatory gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.