Plants from the Aster species are known to be a rich source of bioactive chemical compositions and are popularly known for their medicinal properties. To investigate the relationship between the nine species of Aster, the floral fragrance and volatile profile patterns were characterized using E-nose and HS-SPME-GC-MS. Initial optimization for fragrance analysis was performed with Aster yomena using E-nose by evaluating the scent patterns in different flowering stages. Aster yomena exhibited varied scent patterns in each flowering stage, with the highest relative aroma intensity (RAI) in the full flowering stage. PCA analysis to compare and analyze the scent characteristics of nine Aster species, showed a species-specific classification. HS-SPME-GC-MS analysis of flowers from nine Aster species revealed 52 volatile compounds including β-myrcene, α-phellandrene, D-limonene, trans-β-ocimene, caryophyllene, and β-cadinene. The terpenoid compounds accounted for the largest proportion. Among the nine Aster species flowers, Aster koraiensis had sesquiterpenes as the major component, and the remaining eight varieties had monoterpenes in abundance. These results could distinguish the species according to the scent patterns and volatile components of the nine Aster species. Additionally, flower extracts from the Aster species’ plants exhibited radical scavenging antioxidant activity. Among them, it was confirmed that Aster pseudoglehnii, Aster maackii, and Aster arenarius had high antioxidant activity. In conclusion, the results of this study provide fundamental data of the volatile compound properties and antioxidant activity of Aster species, offering basic information of valuable natural sources that can be utilized in the pharmaceutical, perfume, and cosmetic industries.
Chrysanthemums represent the second most important cut flower after rose on the global commercial market. The phenomenal importance and global popularity of chrysanthemums have attracted breeders’ attention, resulting in the release of vast numbers of cultivars. Identifying these cultivars is crucial to protecting breeders’ intellectual property rights and improving the efficiency of breeding. Distinguishing chrysanthemum genotypes based on their morphological characteristics is challenging as they vary highly within this group, hence requiring the use of efficient molecular markers. In this study, we evaluated the genetic diversity of 57 spray-type chrysanthemum cultivars bearing white, ivory, and cream-colored flowers. A total of six loci were evaluated regarding their polymorphism efficiency across the tested cultivars. Allele numbers ranged from 2 to 6, with a mean of 3.5 alleles per locus. The average polymorphism information content (PIC) was 0.53 for six SSR markers. Cluster analysis of genetic relationships using the UPGMA method showed a genetic distance of 0.31 to 1.00, and the 57 white variants of chrysanthemum cultivars were characterized using the tested SSR markers. However, two sets of cultivars, namely, Pure Angel–Neba and Ladost–White wing, exhibited total genetic similarity and hence could not be discriminated. These results provide efficient SSR markers that can be used to identify chrysanthemum cultivars (and assess their genetic relationships) that cannot be discriminated based on phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.