An injectable hydrogel was applied to regenerate a myocardial infarction and functional recovery of the heart. A myocardial infarction was induced in rat by circumflex artery ligation. A hyaluronic acid-based hydrogel was injected into the epicardium of the infarcted area. Then, cardiac functions and regeneration of the myocardium in sham-operated (SHAM), myocardial infarction (MI), and gel-injected group (GEL) (n = 6) were evaluated 4 weeks after the injection. Measurements of the thickness of the wall showed that the thickness in the GEL group increased by up to 200% compared with that in the MI group (p < 0.001). The infarcted area of the left ventricular in the GEL group decreased by 53% compared with the MI group (p < 0.001). The number of arterioles and capillaries in the border zone of the GEL group increased by 152% and 148%, whereas the apoptotic index decreased by 42% (p < 0.05). Measurement of the heart functions, such as ejection fraction, arterial elastance (Ea), dP/dt max, and dP/dt min, indicated that the injection of a hydrogel significantly facilitated the functional recovery compared with the MI group. Because of its simplicity, easy applicability, and a great regenerating potential, this injectable hydrogel promises as a treatment for myocardial infarction.
Hyaluronic acid (170 kDa)-based hydrogel was synthesized using acrylated hyaluronic acid (HA) and matrix metalloproteinase (MMP) sensitive HA-based hydrogels were then prepared by conjugation with two different peptides: cell adhesion peptides containing integrin-binding domains (Arg-Gly-Asp: RGD) and a cross-linker with MMP degradable peptides to mimic the remodeling characteristics of natural extracellular matrices by cell-derived MMPs. Mechanical properties of these hydrogels were evaluated with different weight percentages (2.5 and 3.5 wt %) by measuring elastic modulus, viscous modulus, and swelling ratio. Human mesenchymal stem cells (hMSCs) were then cultured in MMP-sensitive or insensitive HA-based hydrogels and/or immobilized cell adhesive RGD peptides in vitro. Actin staining and image analysis proved that cells cultured in the MMP-sensitive hydrogel with RGD peptides showed extensive cell spreading and sprouting. Gene expression analysis showed that bone specific genes such as alkaline phosphatase, osteocalcin, and osteopontin increased in MMP-sensitive hydrogels as biomolecules such as BMPs and cells were added in the gels. For in vivo calvarial defect regeneration, five different samples (MMP insensitive hydrogel, MMP sensitive hydrogel, MMP sensitive hydrogel with BMP-2, MMP sensitive hydrogel with hMSC, and MMP sensitive hydrogel with BMP-2 and hMSC) were prepared. After 4 weeks of implantation, the Masson-Trichrome staining and micro computed tomography scan results demonstrated that the MMP sensitive hydrogels with BMP-2 and hMSCs have the highest mature bone formation. The MMP sensitive HA-based hydrogel could become useful scaffolds in bone tissue engineering with improvements on tissue remodeling rates and regeneration activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.