We examine the dynamical evolution of both Plummer sphere and substructured (fractal) star forming regions in Galactic Centre (GC) strong tidal fields to see what initial conditions could give rise to an Arches-like massive star cluster by ∼ 2 Myr. We find that any initial distribution has to be contained within its initial tidal radius to survive, which sets a lower limit of the initial density of the Arches of ∼ 600 M ⊙ pc −3 if the Arches is at 30 pc from the GC, or ∼ 200 M ⊙ pc −3 if the Arches is at 100 pc from the GC. Plummer spheres that survive change little other than to dynamically mass segregate, but initially fractal distributions rapidly erase substructure, dynamically mass segregate and by 2 Myr look extremely similar to initial Plummer spheres, therefore it is almost impossible to determine the initial conditions of clusters in strong tidal fields.
We show that dynamical evolution in a strong (Galactic Centre-like) tidal field can create clusters that would appear to have very top-heavy IMFs. The tidal disruption of single star forming events can leave several bound 'clusters' spread along 20 pc of the orbit within 1-2 Myr. These surviving (sub)clusters tend to contain an over-abundance of massive stars, with low-mass stars tending to be spread along the whole 'tidal arm'. Therefore observing a cluster in a strong tidal field with a top-heavy IMF might well not mean the stars formed with a top-heavy IMF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.