Age estimation has many useful applications, such as age-based face classification, finding lost children, surveillance monitoring, and face recognition invariant to age progression. Among many factors affecting age estimation accuracy, gender and facial expression can have negative effects. In our research, the effects of gender and facial expression on age estimation using support vector regression (SVR) method are investigated. Our research is novel in the following four ways. First, the accuracies of age estimation using a single-level local binary pattern (LBP) and a multilevel LBP (MLBP) are compared, and MLBP shows better performance as an extractor of texture features globally. Second, we compare the accuracies of age estimation using global features extracted by MLBP, local features extracted by Gabor filtering, and the combination of the two methods. Results show that the third approach is the most accurate. Third, the accuracies of age estimation with and without preclassification of facial expression are compared and analyzed. Fourth, those with and without preclassification of gender are compared and analyzed. The experimental results show the effectiveness of gender preclassification in age estimation.
Human age can be employed in many useful real-life applications, such as customer service systems, automatic vending machines, entertainment, etc. In order to obtain age information, image-based age estimation systems have been developed using information from the human face. However, limitations exist for current age estimation systems because of the various factors of camera motion and optical blurring, facial expressions, gender, etc. Motion blurring can usually be presented on face images by the movement of the camera sensor and/or the movement of the face during image acquisition. Therefore, the facial feature in captured images can be transformed according to the amount of motion, which causes performance degradation of age estimation systems. In this paper, the problem caused by motion blurring is addressed and its solution is proposed in order to make age estimation systems robust to the effects of motion blurring. Experiment results show that our method is more efficient for enhancing age estimation performance compared with systems that do not employ our method.
Because of its many useful applications, human age estimation has been considered in many previous studies as a soft biometrics. However, most existing methods of age estimation require a clear and focused facial image as input in order to obtain a trustworthy estimation result; otherwise, the methods might produce increased estimation error when an image of poor quality is used as input. Image blurring is one of major factors that affect estimation accuracies because it can cause a face to appear younger (i.e., reduce the age feature in the face region). Therefore, we propose a new human age estimation method that is robust even with an image that has the optical blurring effect by using symmetrical focus mask and sub-blocks for multi-level local binary pattern (MLBP). Experiment results show that the proposed method can enhance age estimation accuracy compared with the conventional system, which does not consider the effects of blurring.
Biometrics is the technology to identify a user by using the physiological or behavioral characteristics. Among the biometrics such as fingerprint, face, iris, and speaker recognition, finger-vein recognition has been widely used in various applications such as door access control, financial security, and user authentication of personal computer, due to its advantages such as small sized and low cost device, and difficulty of making fake vein image. Generally, a finger-vein system uses near-infrared (NIR) light illuminator and camera to acquire finger-vein images. However, it is difficult to obtain distinctive and clear finger-vein image due to skin scattering of illumination since the finger-vein exists inside of a finger. To solve these problems, we propose a new method of enhancing the quality of finger-vein image. This research is novel in the following three ways compared to previous works. First, the finger-vein lines of an input image are discriminated from the skin area by using local binarization, morphological operation, thinning and line tracing. Second, the direction of vein line is estimated based on the discriminated finger-vein line. And the thickness of finger-vein in an image is also estimated by considering both the discriminated finger-vein line and the corresponding position of finger-vein region in an original image. Third, the distinctiveness of finger-vein region in the original image is enhanced by applying an adaptive Gabor filter optimized to the measured direction and thickness of finger-vein area. Experimental results showed that the distinctiveness and consequent quality of finger-vein image are enhanced compared to that without the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.