The problem of path following for marine surface vessels using the rudder control is addressed in this paper. The need to enforce the roll constraints and the fact that the rudder actuation is limited in both amplitude and rate make the model predictive control (MPC) approach a natural choice. The MPC design is based on a linearized model for computational and implementation considerations, while the evaluation of the performance of MPC controller is performed on a nonlinear 4 degree of freedom surface vessel model. The simulation results are presented to verify the effectiveness of the resulting controller and a simulation based tuning process for the controller is also presented. Furthermore, the performance of the path following MPC control in wave fields is evaluated using an integrated maneuvering and seakeeping model, and the simulation confirms its robustness.
The motion of free-floating space robots is characterized by nonholonomic, i.e., non-integrable rate constraint equations. These constraints originate from principles of conservation of linear and angular momentum. It is well known that these rate constraints can also be written as input-&ne drift-less control systems. Trajectory planning of these systems is extremely challenging and computation intensive since the motion must satisfy differential constraints. However, under certain conditions, these drift-less control systems can be shown to be differentially flat. The property of flatness allows a computationally inexpensive way to plan trajectories for the dynamic system between two configurations BS well BS develop feedback controllers. In this paper, nonholonomic rate constraints for free-floating planar open-chain robots are systematically studied to determine the desig conditions under which the system exhibits differential flatness. Under these design conditions, the property of flatness is used for trajectory planning and feedback control under perturbations L n the initial state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.