Depletion of abundant proteins is one of the effective ways to improve detection and identification of low-abundance proteins. Our previous study showed that protamine sulfate precipitation (PSP) method can deplete abundant ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from leaf proteins and is suitable for their in-depth proteome investigation. In this study, we provide evidence that the PSP method can also be effectively used for depletion of abundant seed-storage proteins (SSPs) from the total seed proteins of diverse legume plants including soybean, broad bean, pea, wild soybean, and peanut. The 0.05% protamine sulfate (PS) was sufficient to deplete major SSPs from all legumes tested except for peanut where 0.1% PS was required. SDS-PAGE, Western blotting and 2DE analyses of PS-treated soybean and peanut seed proteins showed enriched spots in PS-supernatant than total proteins. Coefficient of variation percentage (%CV) and principal component analysis of 2DE spots support the reproducibility, suitability, and efficacy of the PSP method for quantitative and comparative seed proteome analysis. MALDI-TOF-TOF successfully identified some protein spots from soybean and peanut. Hence, this simple, reproducible, economical PSP method has a broader application in depleting plant abundant proteins including SSPs in addition to RuBisCO, allowing discussion for comprehensive proteome establishment and parallel comparative studies in plants.
This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.
Seed coat color is an important attribute determining consumption of soybean seeds. Soybean cultivar Mallikong (M) has yellow seed coat while its naturally mutated cultivar Mallikong mutant (MM), has brown colored seed coat. We used integrated proteomics and metabolomics approach to investigate the differences between seed coats of M and MM during different stages of seed development (4, 5, and 6 weeks after flowering). 2DE profiling of total seed coat proteins from three stages showed 178 differentially expressed spots between M and MM of which 172 were identified by MALDI-TOF/TOF. Of these, 62 were upregulated and 105 were downregulated in MM compared with M, while five spots were detected only in MM. Proteins involved in primary metabolism showed downregulation in MM suggesting energy in MM might be utilized for proanthocyanidin biosynthesis via secondary metabolic pathways that leads to the development of brown seed coat color. Besides, downregulation of two isoforms of isoflavone reductase indicated reduced isoflavones in seed coat of MM that was confirmed by quantitative estimation of total and individual isoflavones using HPLC. We propose that low isoflavones level in MM may offer a high substrate for proanthocyanidin production that results in the development of brown seed coat in MM.
Tomato spotted wilt virus (TSWV), transmitted by small insects known as thrips, is one of the major threats to tomato productivity across the globe. In addition to tomato, this virus infects more than 1000 other plants belonging to 85 families and is a cause of serious concern. Very little, however, is known about the molecular mechanism of TSWV induced signaling in plants. Here, we used a tandem mass tags (TMT)-based quantitative proteome approach to investigate the protein profiles of tomato leaves of two cultivars (cv 2621 and 2689; susceptible and resistant to TSWV infection, respectively) following TSWV inoculation. This approach resulted in the identification of 5112 proteins of which 1022 showed significant changes in response to TSWV. While the proteome of resistant cultivar majorly remains unaltered, the proteome of susceptible cultivar showed distinct differences following TSWV inoculation. TSWV modulated proteins in tomato included those with functions previously implicated in plant defense including secondary metabolism, reactive oxygen species (ROS) detoxification, mitogen-activated protein (MAP) kinase signaling, calcium signaling and jasmonate biosynthesis, among others. Taken together, results reported here provide new insights into the TSWV induced signaling in tomato leaves and may be useful in the future to manage this deadly disease of plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.