We discuss linear regression approaches to the estimation of law-invariant conditional risk measures. Two estimation procedures are considered and compared; one is based on residual analysis of the standard least-squares method, and the other is in the spirit of the M-estimation approach used in robust statistics. In particular, value-at-risk and average value-at-risk measures are discussed in detail. Large sample statistical inference of the estimators is derived. Furthermore, finite sample properties of the proposed estimators are investigated and compared with theoretical derivations in an extensive Monte Carlo study. Empirical results on the real data (different financial asset classes) are also provided to illustrate the performance of the estimators.
The noncentral chi-square approximation of the distribution of the likelihood ratio (LR) test statistic is a critical part of the methodology in structural equations modeling (SEM).Recently, it was argued by some authors that in certain situations normal distributions may give a better approximation of the distribution of the LR test statistic. The main goal of this paper is to evaluate the validity of employing these distributions in practice.Monte Carlo simulation results indicate that the noncentral chi-square distribution describes behavior of the LR test statistic well under small, moderate and even severe misspecifications regardless of the sample size (as long as it is sufficiently large), while the normal distribution, with a bias correction, gives a slightly better approximation for extremely severe misspecifications. However, neither the noncentral chi-square distribution nor the theoretical normal distributions give a reasonable approximation of the LR test statistics under extremely severe misspecifications. Of course, extremely misspecified models are not of much practical interest.
Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.