Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.
Inotodiol, an oxysterol found only in Chaga mushroom, has received attention from the pharmaceutical industry due to its strong antioxidant and anti-allergic activities. However, the production of inotodiol is still challenging, and its fundamental properties have yet to be investigated. This study aims to develop an efficient method to produce high-purity inotodiol from Chaga mushroom. Then, pure inotodiol was used to assess its physicochemical properties and biological activities. By optimizing the solvent used for extraction and purification, a new method to produce inotodiol was developed with high purity (>97%) and purification yield (33.6%). Inotodiol exhibited a melting point (192.06 °C) much higher than lanosterol and cholesterol. However, the solubility of inotodiol in organic solvents was notably lower than those of the other two sterols. The difference in the hydroxyl group at C-22 of inotodiol has shown the distinctive physicochemical properties of inotodiol compared with cholesterol and lanosterol. Based on those findings, a nonionic surfactant-based delivery system for inotodiol was developed to improve its bioavailability. The inotodiol microemulsion prepared with 1–2% Tween-80 exhibited homogenous droplets with an acceptable diameter (354 to 217 nm) and encapsulation efficiency (85.6–86.9%). The pharmacokinetic analysis of inotodiol microemulsion in oral administration of 4.5 mg/kg exhibited AUC0–24h = 341.81 (ng·h/mL), and Cmax = 88.05 (ng/mL). Notably, when the dose increased from 4.5 to 8.0 mg/kg, the bioavailability of inotodiol decreased from 41.32% to 33.28%. In a mouse model of sepsis, the serum level of interleukin-6 significantly decreased, and the rectal temperature of mice was recovered in the inotodiol emulsion group, indicating that inotodiol microemulsion is an effective oral delivery method. These results could provide valuable information for applying inotodiol in functional food, cosmetic, and pharmaceutical industries.
Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushrooms have been investigated for various allergic diseases. However, the anti-aging and anti-inflammatory activities of inotodiol under different types of oxidative stress and the impact of inotodiol on collagen and hyaluronan synthesis have not been sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulations such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1β, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 μg/mL of pure inotodiol. UVB irradiation induced the overexpression of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate the synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role for pure inotodiol/inotodiol concentrate in the prevention of skin aging. These results illuminate the anti-inflammatory and anti-aging effects of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.
Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushroom have been investigated for various allergic diseases. However, antiaging and anti-inflammatory activities of inotodiol under different types of oxidative stress and impact of inotodiol on collagen and hyaluronan synthesis are not sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (the inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulation such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1β, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 μg/mL of pure inotodiol. UVB irradiation induced overexpressions of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role of pure inotodiol/inotodiol concentrate in prevention of skin aging. These results enlighten anti-inflammatory and anti-aging effect of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.