Systemic lupus erythematosus (SLE) has a strong but incompletely understood genetic architecture. We conducted an association study with replication in 4,492 SLE cases and 12,675 controls from six East-Asian cohorts, to identify novel and better localize known SLE susceptibility loci. We identified 10 novel loci as well as 20 known loci with genome-wide significance. Among the novel loci, the most significant was GTF2IRD1-GTF2I at 7q11.23 (rs73366469, Pmeta=3.75×10−117, OR=2.38), followed by DEF6, IL12B, TCF7, TERT, CD226, PCNXL3, RASGRP1, SYNGR1 and SIGLEC6. We localized the most likely functional variants for each locus by analyzing epigenetic marks and gene regulation data. Ten putative variants are known to alter cis- or trans-gene expression. Enrichment analysis highlights the importance of these loci in B- and T-cell biology. Together with previously known loci, the explained heritability of SLE increases to 24%. Novel loci share functional and ontological characteristics with previously reported loci, and are possible drug targets for SLE therapeutics.
Systemic lupus erythematosus (SLE) is a multisystem, autoimmune disease that predominantly affects women. Previous findings that duplicated Toll-like receptor 7 (Tlr7) promotes lupus-like disease in male BXSB mice prompted us to evaluate TLR7 in human SLE. By using a candidate gene approach, we identified and replicated association of a TLR7 3′UTR SNP, rs3853839 (G/C), with SLE in 9,274 Eastern Asians (P combined = 6.5 × 10 −10 ), with a stronger effect in male than female subjects [odds ratio, male vs. female = 2.33 (95% CI = 1.64-3.30) vs. 1.24 (95% CI = 1.14-1.34); P = 4.1 × 10]. G-allele carriers had increased TLR7 transcripts and more pronounced IFN signature than C-allele carriers; heterozygotes had 2.7-fold higher transcripts of G-allele than C-allele. These data established a functional polymorphism in type I IFN pathway gene TLR7 predisposing to SLE, especially in Chinese and Japanese male subjects. functional polymorphism | disease susceptibility | autoimmunity | type I interferon S ystemic lupus erythematosus [SLE; Online Mendelian Inheritance in Man (OMIM) no. 152700] is a multisystem, autoimmune disease with strong genetic and environmental components (1). SLE predominantly affects women, with a female-to-male ratio of approximately 9:1. Male patients with SLE, although rare, tend to have more severe disease and poorer outcome (2), suggesting potential sex dimorphism in the disease development. Although the sex effect has often been attributed to sex hormones, the fact that XXY male subjects have approximately a 14-fold higher risk of developing SLE than 46 XY men indicates that X-linked genes may be risk factors for human SLE (3).Located at Xp22.2, Toll-like receptor 7 (TLR7; OMIM no. 300365) and its functionally related gene TLR8 (OMIM no. 300366) encode proteins that play critical roles in pathogen recognition and activation of innate immunity (4). They recognize endogenous RNA-containing autoantigens and induce the expression of type I IFN, a pivotal cytokine in the pathogenesis of SLE (5). In lupus-prone BXSB mice, the translocation of a segmental duplication of X chromosome to Y chromosome creates the Y-linked autoimmune accelerator (Yaa) locus, which was associated with autoreactive B cell responses to RNA-related antigens and exacerbation of glomerulonephritis in male mice (6). Although translocated X chromosome segment in Yaa may contain as many as 16 genes, the major gene for causation of the autoimmune phenotypes was identified to be TLR7 (7), making it a potential susceptibility gene for SLE. By using a candidate gene approach, we report herein that a functional polymorphism in 3′UTR of TLR7 is associated with SLE in Chinese and Japanese populations, with a stronger effect in male than female subjects. ResultsDiscovery and Replication of the Association of a TLR7 3′UTR SNP with SLE in Eastern Asian Population. We genotyped 27 SNPs from the TLR7-TLR8 region (12 in TLR7 and 15 in TLR8) in 1,434 SLE cases and 1,591 control subjects of Eastern Asian ancestry using the Beadstation Infinium II...
Previous studies have emphasized ethnically heterogeneous human leukocyte antigen (HLA) classical allele associations to rheumatoid arthritis (RA) risk. We fine-mapped RA risk alleles within the major histocompatibility complex (MHC) in 2782 seropositive RA cases and 4315 controls of Asian descent. We applied imputation to determine genotypes for eight class I and II HLA genes to Asian populations for the first time using a newly constructed pan-Asian reference panel. First, we empirically measured high imputation accuracy in Asian samples. Then we observed the most significant association in HLA-DRb1 at amino acid position 13, located outside the classical shared epitope (P omnibus 5 6.9 3 10 2135 ). The individual residues at position 13 have relative effects that are consistent with published effects in European populations (His > Phe > Arg > Tyr Gly > Ser)-but the observed effects in Asians are generally smaller. Applying stepwise conditional analysis, we identified additional independent associations at positions 57 (conditional P omnibus 5 2.2 3 10 233) and 74 (conditional P omnibus 5 1.1 3 10 28). Outside of HLA-DRb1, we observed independent effects for amino acid polymorphisms within HLA-B (Asp9, conditional P 5 3.8 3 10 26) and HLA-DPb1 (Phe9, conditional P 5 3.0 3 10 25 ) concordant with European populations. Our trans-ethnic HLA fine-mapping study reveals that (i) a common set of amino † These authors jointly directed this project.
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a strong genetic component characterized by autoantibody production and a type I interferon signature1. Here we report a missense variant (g.74779296G>A; p.Arg90His) in NCF1, encoding the p47phox subunit of the phagocyte NADPH oxidase (NOX2), as the putative underlying causal variant that drives a strong SLE-associated signal detected by the Immunochip in the GTF2IRD1-GTF2I region at 7q11.23 with a complex genomic structure. We show that the p.Arg90His substitution, which is reported to cause reduced reactive oxygen species (ROS) production2, predisposes to SLE (odds ratio (OR)=3.47 in Asians (Pmeta=3.1×10−104), OR=2.61 in European Americans, OR=2.02 in African Americans) and other autoimmune diseases, including primary Sjögren’s syndrome (OR=2.45 in Chinese, OR=2.35 in European Americans) and rheumatoid arthritis (OR=1.65 in Koreans). Additionally, decreased and increased copy numbers of NCF1 predispose to and protect against SLE, respectively. Our data highlight the pathogenic role of reduced NOX2-derived ROS levels in autoimmune diseases.
Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.