The identification of multicomponent alloys out of a vast compositional space is a daunting task, especially for bulk metallic glasses composed of three or more elements. Despite an increasing theoretical understanding of glass formation, bulk metallic glasses are predominantly developed through a sequential and time-consuming trial-and-error approach. Even for binary systems, accurate quantum mechanical approaches are still many orders of magnitude away from being able to simulate the relatively slow kinetics of glass formation. Here, we present a high-throughput strategy where ∼3,000 alloy compositions are fabricated simultaneously and characterized for thermoplastic formability through parallel blow forming. Using this approach, we identified the composition with the highest thermoplastic formability in the glass-forming system Mg-Cu-Y. The method provides a versatile toolbox for unveiling complex correlations of material properties and glass formation, and should facilitate a drastic increase in the discovery rate of metallic glasses.
In this paper, we report differential scanning calorimetry studies of the temperature and molar mass dependences for the primary and secondary crystallization behavior of bisphenol A polycarbonate (BAPC). The molar mass dependence of the crystallization rate is found to be much stronger during primary than during secondary crystallization, confirming our earlier claims that primary and secondary processes occur by significantly different mechanisms. Investigations of the secondary crystallization process suggest the existence of a crossover phenomenon from secondary crystal formation at low temperatures to isothermal lamellar thickening at high temperatures. While the results of our low-temperature studies of BAPC provide further support for the model developed in a previous publication on poly(arylene ether ether ketone), evidences from atomic force microscopy and calorimetry of isothermal lamellar thickening above the crossover temperature lead us to anticipate a more unified view of polymer crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.