An ERF/AP2-type transcription factor (CaPF1) was isolated by differential-display reverse transcription-PCR, following inoculation of the soybean pustule pathogen Xanthomonas axonopodis pv glycines 8ra, which induces hypersensitive response in pepper (Capsicum annuum) leaves. CaPF1 mRNA was induced under conditions of biotic and abiotic stress. Higher levels of CaPF1 transcripts were observed in disease-resistant tissue compared with susceptible tissue. CaPF1 expression was additionally induced using various treatment regimes, including ethephon, methyl jasmonate, and cold stress. To determine the role of CaPF1 in plants, transgenic Arabidopsis and tobacco (Nicotiana tabacum) plants expressing higher levels of CaPF1 were generated. Gene expression analyses of transgenic Arabidopsis and tobacco revealed that the CaPF1 level in transgenic plants affects expression of genes that contain either a GCC or a CRT/DRE box in their promoter regions. Furthermore, transgenic Arabidopsis plants expressing CaPF1 displayed tolerance against freezing temperatures and enhanced resistance to Pseudomonas syringae pv tomato DC3000. Disease tolerance was additionally observed in CaPF1 transgenic tobacco plants. The results collectively indicate that CaPF1 is an ERF/AP2 transcription factor in hot pepper plants that may play dual roles in response to biotic and abiotic stress in plants.
The first line of defense in plants against pathogens is induced by the recognition of microbe-associated molecular patterns (MAMP). Perception of bacterial flagellin (flg22) by the pattern recognition receptor flagellin-sensing 2 (FLS2) is the best characterized MAMP response, although the underlying molecular mechanisms are not fully understood. Here we studied the relationship between salicylic acid (SA) or jasmonic acid (JA) signaling and FLS2-mediated signaling by monitoring flg22-triggered responses in known SA or JA related mutants of Arabidopsis thaliana (L.) Heynh. The sid2 mutant, impaired in SA biosynthesis, had less basal FLS2 mRNA accumulation than the wild type, which correlated with suppression of early flg22 responses such as ROS production and induction of marker genes, WRKY29 and FRK1. The JA-signaling mutants, jar1 and coi1, exhibited an enhanced flg22-triggered oxidative burst and more callose accumulation than the wild type, and pretreatment with SA or coronatine (COR), a structural mimic of JA-isoleucine, altered these flg22-induced responses. Nonexpressor of pathogenesis-related genes 1 (NPR1) acted downstream of SID2 and required SA-dependent priming for the enhanced flg22-triggered oxidative burst and callose deposition. Activation of JA signaling by COR pretreatment suppressed the flg22-triggered oxidative burst and callose accumulation in a coronatine insensitive 1 (COI1) dependent manner. COR had a negative effect on flg22 responses but only the flg22-triggered oxidative burst depended on SA-JA/COR signaling antagonism. Thus the activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. These results may explain how SA and JA signaling are cross talked for regulation of flg22-triggered responses.
Summary• Plants respond to pathogens by regulating a network of signaling pathways that fine-tune transcriptional activation of defense-related genes.• The aim of this study was to determine the role of Capsicum annuum WRKY zinc finger-domain transcription factor 1 (CaWRKY1) in defense. In previous studies, CaWRKY1 was found to be rapidly induced in C. annuum (chili pepper) leaves by incompatible and compatible pathogen inoculations, but the complexity of the network of the WRKY family prevented the function of CaWRKY1 in defense from being elucidated.• Virus-induced gene silencing of CaWRKY1 in chili pepper leaves resulted in decreased growth of Xanthomonas axonopodis pv. vesicatoria race 1. CaWRKY1-overexpressing transgenic plants showed accelerated hypersensitive cell death in response to infection with tobacco mosaic virus and Pseudomonas syringe pv. tabaci. Lower levels of pathogenesis-related gene induction were observed in CaWRKY1-overexpressing transgenic plants following salicylic acid (SA) treatments.• This work suggests that the newly characterized CaWRKY1, which is strongly induced by pathogen infections and the signal molecule SA, acts as a regulator to turn off systemic acquired resistance once the pathogen challenge has diminished and to prevent spurious activation of defense responses at suboptimal concentrations of SA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.