SUMMARY:Three different reptilian species Psammophis sibilans (Order Ophidia), Tarentola annularis (Order Squamata and Crocodylus niloticus (Order Crocodylia) are used in the present study. Their tongue is removed and examined morphologically. Their lingual mucosa examined under scanning electron microscopy (SEM) as well as processed for histological investigation. Gross morphological studies revealed variations of tongue gross structure being elongated with bifurcated end in P. sibilans or triangular flattened structure with broad base and conical free border in T. annularis or rough triangular fill almost the floor cavity in C. niloticus. At SEM, the lingual mucosa showed fine striated grooves radially arranged in oblique extension with missing of lingual papillae. Numerous microridges are detected above the cell surfaces in P. sibilans. T. annularis exhibited arrangement of conical flattened filiform papillae and abundant of microridges. However in C. niloticus, the lingual mucosa possessed different kinds of filiform papillae besides gustatory papillae and widespread arrangement of taste buds. Histologically, confirmed SEM of illustrating the lingual mucosa protrusion of stratified squamous epithelium in P. sibilans and presence of apical taste buds in conical filiform papillae of T. annularis. The lingual mucosa of C. niloticus revealed different forms of both filiform and gustatory papillae.
Aging contributed to an increase of oxidative stress resulting from damage of mitochondria in retinal cells, a decrease of the anti-oxidant enzyme system and an increase of markers of retinal cell death.
Aging is a biological phenomenon that involves an increase of oxidative stress associated with gradual degradation of the structure and function of the optic nerve. Gender differences and subsequent deterioration of optic nerve are an interesting topic, especially because there is little published work concerning it. One hundred male and female Wistar albino rats' with ages 1, 6, 18, 24, and 30 months (n = 20 equal for male and female) were used. At the time interval, optic nerve was investigated by light and transmission electron microscopy (TEM), assessments of antioxidant enzymes (catalase, superoxide dismustase, and glutathione-S-transferase), caspase 3 and 7, malondialdhyde, flow cytometry of DNA, annexin v, and CD8, immunochemistry of vascular endothelial growth factor (VEGF), CD31, and CD45, and single-strand DNA fragmentation. Light and TEM observations of the older specimens (24 and 30 months) revealed apparent deterioration of optic nerve axons, abundant oligodendrocytes with pyknotic nuclei, swollen astrocytes, angiogenesis, vacuolar degeneration, and mitochondrial damage. Females were highly susceptible to aging processes. Concomitantly, there was a marked reduction of antioxidant's enzymes and an increase of lipid peroxidation and apoptotic markers. Old age exhibited a marked increase of G1 apoptosis, UR and LR of annexin V and CD8 as well as increased immuno-positive reaction with VEGR, CD31 and CD45. We conclude that aging contributed to an increase of oxidative stress resulting from damage of mitochondria in axons, oligodendrocytes, and astrocytes. Age-related loss of optic nerve axons is associated with multifactorial agents including reduction in antioxidant enzymes, disruption of vasculature, astrocyte, and oligodendrocyte, demyelination, and damage of mitochondria, which enhance the liberation of reactive oxygen species as assessed by an increase of apoptotic markers malondialdhyde and caspase 3 and 7.
Objective: Lipoaspiration of human breast fats are important source of adipocyte stem cells (hAMSCs) which play a great role in regenerative medicine. The present study illustrates its capability of its transformation and characterization of adipocyte, osteogenic or chondrogenic cells. Methods and results: The hAMSCs were positive for CD13, CD29, CD105 and CD90 and negative CD34 and CD 14. The hAMSCs were cultured in adipogenic or osteogenic culture for 4,7,14 & 21 days. Gene expression for adipogenic (PCR of leptin, peroxisome proliferator-activated receptor-γ and lipoprotein lipase) and osteogenic (osteocalcin) cells were carried out. Biochemical assessments of adipogenic (lipoprotein lipase enzyme and glycerol-3-phosphate dehydrogenase) and osteogenic (alkaline phosphatase, B-galactosidase and calcium content) markers. Also, light and transmission electron microscopic investigation of adipocyte stem cell culture were investigated at 4,7,14 & 21 days in both two models. Adipocyte derived from hAMSCs displayed fi broblastic morphology and confl uency at 7 days and fl at-shape with positive oil red staining at 14 &21 days. At ultrastructural level, the adipocyte derived from hAMSCs exhibited ideal structure. Also, it showed adipogenic gene expression and biochemical investigation. Similar was observed of its osteogenic affi nity of bone cells derived from hAMSCs. Conclusion: The authors concluded that adipocyte stem cells are capable of differentiating into adipocyte, osteoblast and chondroblast depending on the culture medium and are promising in regenerating medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.