Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.
The phylogenetic diversity of the bacterial and archaeal community in the water and sediments of three large lakes of the Wadi An Natrun was investigated using 16S rRNA clone libraries. The bacterial community was diverse: 769 clones formed 345 operational taxonomic units (OTUs) defined at 99% 16S rRNA sequence identity. The bacterial community in both the water and sediments of the lakes was dominated by clones affiliated with the low G + C Gram-type-positive group, alpha-proteobacteria, and Bacteroidetes, (11-39, 11-30, and 10-37% of OTUs observed, respectively), patterns that have been observed in previously described alkaline, athalassohaline systems. However, a relatively high proportion of Firmicutess-related clones in the water of the lakes and alpha-proteobacteria in the sediments was observed. The bacterial community composition of the water and sediment of the same lake and of different lakes was significantly different (p < 0.05). Operational taxonomic units related to the gamma-proteobacteria were more abundant in the sediment of Lake Fazda, whereas the sediment of Lake UmRisha was dominated by members of the delta-proteobacteria. The proportion of gamma-proteobacterial and Bacteroidetes-affiliated OTUs were predominant in the water of Lake UmRisha and differed significantly from other lake waters (chi-squared analysis, p < or = 0.01). The more oxygenated and dilute nature of Lake Hamra was reflected in its microbial community composition, with the abundance of Bacillales sequences in the water, the absence of Halanaerobiales, Clostridiales, and Archaea in the water, and the presence of representatives of more phyla such as the Actinobacteria, Spirochaetes, and Verrucomicrobia. The archaeal community composition appeared less diverse: 589 clones resulted in 198 OTUs defined at 99% 16S rRNA sequence identity, and all sequences fell into the phylum Euryarchaeota. Phylogenetic analysis showed that many of the sequences were distantly related (83-90% 16S rRNA sequence identity) to cultured and uncultured archaea, with many clones forming clusters that branched deeply within the Euryarchaeota. Forty-two and 53% of the bacterial and archaeal clones had less than 90% 16S rRNA sequence identity to previously described sequences. This indicates that the water and sediments of the Wadi An Natrun harbor a unique and novel prokaryotic diversity that is different from what has been described among other alkaline, athalassohaline lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.