The aim of the study was twofold: first, to compare the activity of the autonomic nervous system (ANS) between the population self-declared as electrohypersensitive (EHS) and their matched control individuals without intended exposure to electromagnetic fields (EMF). The second objective was to determine whether acute exposure to different radiofrequency signals modifies ANS activity in EHS. For that purpose, two different experiments were undertaken, in which ANS activity was assessed through heart rate variability (HRV) and skin conductance (SC). In the first experiment, a comparison between the EHS group ( = 30) and the control group ( = 25) showed that the EHS has an increased number of responses to auditory stimuli as measured by skin conductance activity, and that none of the short-term heart rate variability parameters differ between the two matched study groups. The second experiment, performed in a shielded chamber, involved 10 EHS from the first experiment. The volunteers participated in two different sessions (sham and exposure). The participants were consecutively exposed to four EMF signals (GSM 900, GSM 1800, DECT, and Wi-Fi) at environmental level (1 V/m). The experiment was double blinded and counterbalanced. The HRV variables studied did not differ between the two sessions. Concerning electrodermal activity, the data issued from skin conductance and tonic activity did not differ between the sessions, but showed a time variability. In conclusion, the HRV and SC profiles did not significantly differ between the EHS and control populations under no exposure. Exposure did not have an effect on the ANS parameters we have explored. This study provided analysis on the skin conductance parameters using a newly developed method (peak/min, extraction of skin conductance responses) that had not been performed previously. Additionally, the skin conductance signal was decomposed, considering tonic and phasic activities to be a distinct compound. Moreover, this is the first time a study has been designed into two steps to understand whether the autonomic nervous system is disturbed in the EHS population.
Vascular calcification arises during chronic kidney disease (CKD), and increases the risk of cardiovascular mortality. In CKD, alterations of cerebral circulation were linked with an increase in ischemic strokes and behavioral troubles. Studying pathophysiological mechanisms of calcifications and detecting new biomarkers in the cerebral circulation is thus an important issue. microRNAs are small non-coding, single-stranded RNAs that regulate messenger RNAs at the post-transcriptional level. They are involved in numerous pathologies and represent new opportunities to develop disease predictors. We used RT-qPCR to quantify endothelial-specific microRNAs in cerebral arterioles from WT mice and from pathological models of CKD. We used four mice groups: WT SHAM, WT CKD, Apolipoprotein E Knock-Out (ApoE-KO) SHAM, ApoE-KO CKD. Brains were removed after two and ten weeks of uremia and RNA from cerebral arterioles was extracted. miR-17 and miR-126 were the most dysregulated in the pathological conditions, at both the second week and tenth week of uremia. Our results suggest that miR-17 and miR-126 are potential new biomarkers of cerebral troubles of CKD patients and new therapeutic targets for innovative treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.