Aim To describe the phylogeographic patterns of the black rat, Rattus rattus, from islands in the western Indian Ocean where the species has been introduced (Madagascar and the neighbouring islands of Réunion, Mayotte and Grande Comore), in comparison with the postulated source area (India).Location Western Indian Ocean: India, Arabian Peninsula, East Africa and the islands of Madagascar, Réunion, Grande Comore and Mayotte.Methods Mitochondrial DNA (cytochrome b, tRNA and D-loop, 1762 bp) was sequenced for 71 individuals from 11 countries in the western Indian Ocean. A partial D-loop (419 bp) was also sequenced for eight populations from Madagascar (97 individuals), which were analysed in addition to six previously published populations from southern Madagascar. ResultsHaplotypes from India and the Arabian Peninsula occupied a basal position in the phylogenetic tree, whereas those from islands were distributed in different monophyletic clusters: Madagascar grouped with Mayotte, while Réunion and Grand Comore were present in two other separate groups. The only exception was one individual from Madagascar (out of 190) carrying a haplotype that clustered with those from Réunion and South Africa. 'Isolation with migration' simulations favoured a model with no recurrent migration between Oman and Madagascar. Mismatch distribution analyses dated the expansion of Malagasy populations on a time-scale compatible with human colonization history. Higher haplotype diversity and older expansion times were found on the east coast of Madagascar compared with the central highlands.Main conclusions Phylogeographic patterns supported the hypothesis of human-mediated colonization of R. rattus from source populations in either the native area (India) or anciently colonized regions (the Arabian Peninsula) to islands of the western Indian Ocean. Despite their proximity, each island has a distinct colonization history. Independent colonization events may have occurred simultaneously in Madagascar and Grande Comore, whereas Mayotte would have been colonized from Madagascar. Réunion was colonized independently, presumably from Europe. Malagasy populations may have originated from a single successful colonization event, followed by rapid expansion, first in coastal zones and then in the central highlands. The congruence of the observed phylogeographic pattern with human colonization events and pathways supports the potential relevance of the black rat in tracing human history.
Summary Background Madagascar accounts for 75% of global plague cases reported to WHO, with an annual incidence of 200–700 suspected cases (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual size occurred. The extent of this epidemic provides a unique opportunity to better understand the epidemiology of pneumonic plagues, particularly in urban settings. Methods Clinically suspected plague cases were notified to the Central Laboratory for Plague at Institut Pasteur de Madagascar (Antananarivo, Madagascar), where biological samples were tested. Based on cases recorded between Aug 1, and Nov 26, 2017, we assessed the epidemiological characteristics of this epidemic. Cases were classified as suspected, probable, or confirmed based on the results of three types of diagnostic tests (rapid diagnostic test, molecular methods, and culture) according to 2006 WHO recommendations. Findings 2414 clinically suspected plague cases were reported, including 1878 (78%) pneumonic plague cases, 395 (16%) bubonic plague cases, one (<1%) septicaemic case, and 140 (6%) cases with unspecified clinical form. 386 (21%) of 1878 notified pneumonic plague cases were probable and 32 (2%) were confirmed. 73 (18%) of 395 notified bubonic plague cases were probable and 66 (17%) were confirmed. The case fatality ratio was higher among confirmed cases (eight [25%] of 32 cases) than probable (27 [8%] of 360 cases) or suspected pneumonic plague cases (74 [5%] of 1358 cases) and a similar trend was seen for bubonic plague cases (16 [24%] of 66 confirmed cases, four [6%] of 68 probable cases, and six [2%] of 243 suspected cases). 351 (84%) of 418 confirmed or probable pneumonic plague cases were concentrated in Antananarivo, the capital city, and Toamasina, the main seaport. All 50 isolated Yersinia pestis strains were susceptible to the tested antibiotics. Interpretation This predominantly urban plague epidemic was characterised by a large number of notifications in two major urban areas and an unusually high proportion of pneumonic forms, with only 23% having one or more positive laboratory tests. Lessons about clinical and biological diagnosis, case definition, surveillance, and the logistical management of the response identified in this epidemic are crucial to improve the response to future plague outbreaks. Funding US Agency for International Development, WHO, Institut Pasteur, US Department of Health and Human Services, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases, Models of Infectious Disease Agent Study of the National Institute of General Medical Sciences, AXA Research Fund, and the INCEPTION programme.
Plague affects mainly the rural areas in the central highlands of Madagascar. Rattus rattus is the main rodent host of Yersinia pestis in these localities. Since the introduction of plague, endemic foci have continued to expand, and spatiotemporal variability in the distribution of human plague has been observed. To assess the movements of R. rattus and evaluate the risk of dispersion of the disease, a field study at the scale of the habitats (houses, hedges of sisals, and rice fields) in the plague villages was carried out during high and low seasons of plague transmission to humans. The systemic oral marker Rhodamine B was used to follow rats' movements. Baits were placed in different habitats, and trapping success was carried out once a month for 3 months after the bait distribution. Plague indicators (reservoirs' abundance, flea index, Y. pestis prevalence in fleas, and Y. pestis antibody prevalence in rats) were determined. The highest abundance of rats and marking efficiency were observed in the sisal hedges and the rice fields. Marked rats were captured most commonly near the points where baits were initially placed. The main movements of rats were observed between the houses and sisal hedges. Major differences were observed between the seasons of high and low plague transmission. During the season of low plague transmission, rats were more abundant in the sisal hedges and rice fields, with rats moving from the houses to the rice fields. During the high plague transmission season, rats moved from the hedges of sisal to the rice fields. Important indicators of vector abundance and plague transmission were higher during the high plague transmission season. The three study habitats were the risk areas for plague transmission, but the risk appeared highest in the houses and sisals. Rats' movements according to the season were likely directed by the availability of food.
BackgroundLeptospirosis has long been a major public health concern in the southwestern Indian Ocean. However, in Madagascar, only a few, old studies have provided indirect serological evidence of the disease in humans or animals.Methodology/Principal FindingsWe conducted a large animal study focusing on small-mammal populations. Five field trapping surveys were carried out at five sites, from April 2008 to August 2009. Captures consisted of Rattus norvegicus (35.8%), R. rattus (35.1%), Mus musculus (20.5%) and Suncus murinus (8.6%). We used microbiological culture, serodiagnosis tests (MAT) and real-time PCR to assess Leptospira infection. Leptospira carriage was detected by PCR in 91 (33.9%) of the 268 small mammals, by MAT in 17 of the 151 (11.3%) animals for which serum samples were available and by culture in 9 of the 268 animals (3.3%). Rates of infection based on positive PCR results were significantly higher in Moramanga (54%), Toliara (48%) and Mahajanga (47.4%) than in Antsiranana (8.5%) and Toamasina (14%) (p = 0.001). The prevalence of Leptospira carriage was significantly higher in R. norvegicus (48.9%), S. murinus (43.5%) and R. rattus (30.8%) than in M. musculus (9.1%) (p<0.001). The MAT detected antibodies against the serogroups Canicola and Icterohaemorrhagiae. Isolates were characterized by serology, secY sequence-based phylogeny, partial sequencing of rrs, multi-locus VNTR analysis and pulsed field gel electrophoresis. The 10 isolates obtained from nine rats were all identified as species L. interrogans serogroup Canicola serovar Kuwait and all had identical partial rrs and secY sequences.Conclusions/SignificanceWe present here the first direct evidence of widespread leptospiral carriage in small mammals in Madagascar. Our results strongly suggest a high level of environmental contamination, consistent with probable transmission of the infection to humans. This first isolation of pathogenic Leptospira strains in this country may significantly improve the detection of specific antibodies in human cases.
In Madagascar, the black rat, Rattus rattus, is the main reservoir of plague (Yersinia pestis infection), a disease still responsible for hundreds of cases each year in this country. This study used experimental plague challenge to assess susceptibility in wild-caught rats to better understand how R. rattus can act as a plague reservoir. An important difference in plague resistance between rat populations from the plague focus (central highlands) and those from the plague-free zone (low altitude area) was confirmed to be a widespread phenomenon. In rats from the plague focus, we observed that sex influenced plague susceptibility, with males slightly more resistant than females. Other individual factors investigated (weight and habitat of sampling) did not affect plague resistance. When infected at high bacterial dose (more than 10⁵ bacteria injected), rats from the plague focus died mainly within 3-5 days and produced specific antibodies, whereas after low-dose infection (< 5,000 bacteria), delayed mortality was observed and surviving seronegative rats were not uncommon. These results concerning plague resistance level and the course of infection in the black rat would contribute to a better understanding of plague circulation in Madagascar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.