BackgroundEquine piroplasmosis (EP) caused by Theileria equi, Babesia caballi, or both, contributes to significant economic loss in the equine industry and remains uncontrolled in Egypt. This study focuses on surveying T. equi and B. caballi infections and hematological disorders in equine populations in Egypt.MethodsTheileria equi and B. caballi infections were assessed in blood from 88 horses and 51 donkeys in Egypt using light microscopy, indirect immunofluorescent antibody test (IFAT), nested PCR (nPCR), and competitive-ELISA (cELISA) assays. PCR products were examined for specificity by DNA sequencing. Hematological alterations were evaluated using a standard cell counter.ResultsMicroscopic analysis revealed EP infection in 11.4 % and 17.8 % of horses and donkeys respectively. IFAT detected 23.9 % and 17.0 % infection of T. equi and B. caballi, respectively, in horses, and 31.4 % of T. equi and B. caballi in donkeys. T. equi cELISA detected 14.8 % and 23.5 % positive horses and donkeys, respectively, but the B. caballi RAP-1-based cELISA failed to detect any positives, a result hypothesized to be caused by sequence polymorphism found in the rap-1 genes. Nested-PCR analysis identified 36.4 % and 43.1 % positive horses and donkeys, respectively for T. equi and it also identified 19.3 % and 15.7 % positive horses and donkeys, respectively for B. caballi. The overall EP incidence found in the population under study was relatively high and comparable regardless of the diagnostic method used (56.8 % using nPCR and 48.9 % using IFAT). Hematologic analysis revealed macrocytic hypochromic anemia and thrombocytopenia in all piroplasma-infected horses.ConclusionsThe data confirm relatively high levels of EP, likely causing hematological abnormalities in equines in Egypt, and also suggest the need for an improved serological test to diagnose B. caballi infection in this region.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1539-9) contains supplementary material, which is available to authorized users.
Tick-borne diseases comprise a complex epidemiological and ecological network that connects the vectors, pathogens, and a group of host species. The aim of this study was to identify bacteria from the genus Rickettsia associated with ixodid ticks infesting camels and cows in Egypt. Ticks were collected from 6 different localities: Qina, Giza, Qalet El Nakhl, New Valley, El Arish, and Minufia, from July to October 2008. Species were identified using PCR, followed by sequencing. The gltA and rOmpA genes were used for the initial detection of Rickettsia spp. Further characterization of positive samples utilized primers targeting rOmpB, sca4, and intergenic spacers (mppA-purC, dksA-xerC, and rpmE-tRNA(fMet)). Cows were infested with Hyalomma anatolicum excavatum and Boophilus annulatus. Camels were infested with Hyalomma dromedarii, H. impeltatum, and H. marginatum marginatum. Approximately 57.1% of H. dromedarii ticks collected from Qalet El Nakhl were infected with Rickettsia africae, exhibiting 99.1-100% identity to reference strains. Within H. impeltatum, 26.7% and 73.3% of ticks from El Arish were infected with R. africae and R. aeschlimannii, with 98.3-100% and 97.9-100% identity, respectively. Furthermore, 33.3% of H. marginatum marginatum ticks in Qalet El Nakhl were infected with the same two species as H. impeltatum, demonstrating 99.1-100% and 99.3-100% identity, respectively. By comparing percent identities and phylogenetic relationships, R. africae is identified for the first time in Egypt, in addition to R. aeschlimannii, which exhibits 100% identity with the Stavropol strain in GenBank. In conclusion, the obtained data underscore the medical and veterinary importance of tick-borne rickettsioses, which necessitate further investigation by authorities in Egypt. Moreover, additional characterization of these rickettsial isolates should be performed to designate their strains, using a polyphasic strategy combining genotypic and phenotypic tests, to facilitate their deposition in the rickettsial collection of the WHO and/or ATCC.
Aim:Rickettsioses have an epidemiological importance that includes pathogens, vectors, and hosts. The dog tick Rhipicephalus sanguineus and the camel tick Hyalomma dromedarii play important roles as vectors and reservoirs of Rickettsiae. The aim of this study was to determine the prevalence of Rickettsiae in ixodid ticks species infesting dogs and camels in Egypt, in addition to, the morphological and molecular identification of R. sanguineus and H. dromedarii.Materials and Methods:A total of 601 and 104 of ticks’ specimens were collected from dogs and camels, respectively, in Cairo, Giza and Sinai provinces. Hemolymph staining technique and OmpA and gltA genes amplification were performed to estimate the prevalence rate of Rickettsiae in ticks. For morphological identification of tick species, light microscope (LM) and scanning electron microscope (SEM) were used. In addition to the phylogenetic analyses of 18S rDNA, Second internal transcript spacer, 12S rDNA, cytochrome c oxidase subunit-1, and 16S rDNA were performed for molecular identification of two tick species.Results:The prevalence rate of Rickettsiae in ticks was 11.6% using hemolymph staining technique and 6.17% by OmpA and gltA genes amplification. Morphological identification revealed that 100% of dogs were infested by R. sanguineus while 91.9% of camels had been infested by H. dromedarii. The phylogenetic analyses of five DNA markers confirmed morphological identification by LM and SEM. The two tick species sequences analyses proved 96-100% sequences identities when compared with the reference data in Genbank records.Conclusion:The present studies confirm the suitability of mitochondrial DNA markers for reliable identification of ticks at both intra- and inter-species level over the nuclear ones. In addition to, the detection of Rickettsiae in both ticks’ species and establishment of the phylogenetic status of R. sanguineus and H. dromedarii would be useful in understanding the epidemiology of ticks and tick borne rickettsioses in Egypt.
Background and Aim:Q fever Coxiella burnetii is a worldwide zoonotic disease, and C. burnetii was detected in mammals and ticks. Ticks play an important role in the spread of C. burnetii in the environment. Therefore, the aims of this study were to detect Q fever C. burnetii in camels and ixodid ticks by molecular tools and identification of Hyalomma dromedarii and Hyalomma excavatum using molecular and immunological assays.Materials and Methods:A total of 113 blood samples from camels and 190 adult ticks were investigated for the infection with C. burnetii by polymerase chain reaction (PCR) and sequencing the targeting IS30A spacer. The two tick species H. dromedarii and H. excavatum were characterized molecularly by PCR and sequencing of 16S ribosomal RNA (16S rRNA) and cytochrome oxidase subunit-1 (CO1) genes and immunologically by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot.Results:A total of 52 camels (46%) were positive for Q fever infection. Only 10 adult ticks of H. dromedarii were infected with C. burnetii. The IS30A sequence was around 200 bp in length for C. burnetii in H. dromedarii ticks with a similarity of 99% when compared with reference data in GenBank records. The length of 16S rDNA and CO1 was 440 and 850 bp, respectively, for both H. dromedarii and H. excavatum. The phylogenetic status of H. dromedarii was distant from that of H. excavatum. SDS-PAGE revealed seven different bands in the adult antigens of either H. dromedarii or H. excavatum with molecular weights ranged from 132.9 to 17.7 KDa. In western blot analyses, the sera obtained from either infested camel by H. dromedarii or infested cattle by H. excavatum recognized four immunogenic bands (100.7, 49.7, 43.9, and 39.6 kDa) in H. dromedarii antigen. However, the infested camel sera identified two immunogenic bands (117 and 61.4 kDa) in H. excavatum antigen. Furthermore, the sera collected from cattle infested by H. excavatum recognized three immunogenic bands (61.4, 47.3, and 35 kDa) in H. excavatum antigen.Conclusion:Molecular analyses indicated that both camels and ticks could be sources for infection of animals and humans with Q fever. Furthermore, the molecular analyses are more accurate tools for discriminating H. dromedarii and H. excavatum than immunological tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.