Urdu language uses cursive script which results in connected characters constituting ligatures. For identifying characters within ligatures of different scales (font sizes), Convolution Neural Network (CNN) and Long Short Term Memory (LSTM) Network are used. Both network models are trained on formerly extracted ligature thickness graphs, from which models extract Meta features. These thickness graphs provide consistent information across different font sizes. LSTM and CNN are also trained on raw images to compare performance on both forms of inputs. For this research, two corpora, i.e. Urdu Printed Text Images (UPTI) and Centre for Language Engineering (CLE) Text Images are used. Overall performance of networks ranges between 90% and 99.8%. Average accuracy on Meta features is 98.08% while using raw images, 97.07% average accuracy is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.